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Abstract. We study how fads emerge under social learning in a changing environment.
We consider a simple sequential social learning model where rational agents arrive in
order, each acting only once, and the underlying unknown state constantly evolves.
Each agent receives a private signal, observes all past actions of others, and chooses an
action to match the current state. Because the state changes over time, cascades cannot
last forever, and actions also fluctuate. We show that despite the rise of temporary
information cascades, in the long run, actions change more often than the state. This
result provides a theoretical foundation for faddish behavior in which people often change
their actions more frequently than necessary.

1. Introduction

The term “fad” refers to transient behavior that rapidly rises and fades in popular-
ity. Specifically, these rapid behavioral shifts cannot be fully attributed to changes in
the underlying fundamentals. For example, in macroeconomics, there are boom-and-
bust business cycles that cannot be explained by changes in the underlying economy.1

Similarly, in finance, it has long been documented that price deviations from an asset’s
intrinsic value can stem from speculative bubbles and fads (Camerer, 1989; Aggarwal and
Rivoli, 1990). Although the phenomenon of fads is widely observed in many economic
activities, the question of how and why they emerge remains unresolved. In this paper,
we model fads as excessive behavioral fluctuations relative to changes in the underlying
environment and demonstrate how they can emerge under social learning in a dynamic
setting.

The pioneering work in the social learning literature (Banerjee, 1992; Bikhchandani,
Hirshleifer, and Welch, 1992, hereafter referred to as BHW) shows that, under appropriate
conditions, an information cascade will always occur. This is the event in which social
information overwhelms agents’ private information, leading them to follow the actions
of their predecessors even if their own private information suggests otherwise. At the
same time, because these cascades are typically formed based on limited information,
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they are fragile to small shocks over time. This fragility of cascades is briefly discussed
in BHW, where it is shown that the possibility of a one-time change in the underlying
environment can lead to “seemingly whimsical swings in mass behavior without obvious
external stimulus”—a phenomenon they refer to as fads. Inspired by this idea, we formally
define fads and study their long-term behavior.

While BHW present an early idea of a fad, they mainly focus on learning in a fixed
environment where fads cannot recur indefinitely. In contrast, the recurrence of fads is
possible in a changing environment, a setting that has recently attracted some attention
(see, e.g., Dasaratha, Golub, and Hak, 2020; Lévy, Pęski, and Vieille, 2022). Indeed,
this is an important setting to study, as many applications of social learning—such as
investment, employment, cultural norms, and technological advancement—often operate
in a dynamic environment.

In this paper, we study a canonical model of social learning (i.e. a binary state with
symmetric and informative binary signals) with a slight twist: in each period, the under-
lying state switches with a small (and symmetric) probability.2 We focus on the long-term
behavior of agents, who arrive sequentially and learn from observing the past actions of
others as well as their private signals. Each agent acts once and obtains a positive payoff
if their action matches the current state. As the underlying state evolves, the optimal
action fluctuates as well. The questions we aim to address are: How frequently do ac-
tions change? And more specifically, do they change more or less often compared to the
underlying state?

Note that in this dynamic environment, the occurrence of information cascades is no
longer guaranteed. Intuitively, if the underlying state changes too frequently, the social
information extracted from past actions contains little information about the current
state, as it primarily reflects the previous state, which is likely to be different from the
current one. Indeed, as shown in Moscarini, Ottaviani, and Smith (1998), information
cascades occur only if the state changes relatively slowly, and even then, they can only
last temporarily. This is because, once a cascade forms, there is no new inflow of infor-
mation. Consequently, the social information on which the cascade was built depreciates
over time and it becomes less relevant to the current agent. Eventually, this social infor-
mation becomes weak enough so that agents will revert to using their private signals and
adjust their actions accordingly. Thus, unlike in a static environment where cascades last
indefinitely, when the state evolves slowly, cascades can still arise but they cannot persist
indefinitely.

We henceforth focus on the setting in which the state evolves slowly so that temporary
cascades can arise; otherwise, all action fluctuations are driven solely by fluctuations in

2This is also known as a simple two-state Markov process. See other studies of social learning with a
Markovian state, e.g., Moscarini, Ottaviani, and Smith (1998); Hirshleifer and Welch (2002) and Lévy,
Pęski, and Vieille (2022). Our model is mostly similar to that in Moscarini, Ottaviani, and Smith (1998)
except for the tie-breaking rule.
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private signals, which are clearly more volatile than the state. In this setting, the question
of whether actions change more or less frequently than the state is no longer clear. On the
one hand, agents sometimes ignore their private signals due to cascades and therefore do
not change their actions even when the state changes.3 On the other hand, because the
signals are not perfectly informative about the state, agents sometimes change actions
unnecessarily. Building on the idea of excessive behavioral changes, we say that fads
emerge if there are more action changes than state changes. Our main result (Theorem
1) shows that even with the occurrence of temporary cascades, fads emerge almost surely
in the long run—that is, actions change excessively relative to the state over time.

For example, consider a private signal that matches the current state 80 percent of the
time. When the state changes once every 100 periods on average, we demonstrate that
it takes fewer than sixty-one periods for agents to change their actions (see Proposition
1). As a result, the long-term frequency of action changes must exceed that of state
changes, leading to the emergence of fads in the long run. It is worth emphasizing that
in this model, agents are fully rational, and fads arise from their desire to match the
ever-changing state based on the information they have, rather than from any payoff
externalities between agents or heuristic-driven behavior.

The proof strategy behind the long-term emergence of fads is as follows. First, for any
fixed signal precision and probability of state change, there exists a maximum length for
each temporary information cascade. Consequently, although the presence of temporary
cascades prolongs action inertia, this effect is limited by their bounded length. Further-
more, once agents exit a cascade, they only need one opposing signal to change their
actions. Together, these observations allow us to establish a lower bound on the proba-
bility of an action change, which in turn provides an upper bound for the expected time
between these changes. We then show that this upper bound is less than the expected
time between state changes, implying that action changes occur more frequently than
state changes on average. Finally, by translating the expected time between changes for
both the state and the action into their long-term frequency of changes, we conclude that
fads emerge in the long run.

1.1. Related Literature. This paper is closely related to a small stream of studies on
social learning in a changing state. In BHW, they briefly discuss the case where a one-
time shock to the state could break the cascade, even though that shock may never be
realized. They provide a numerical example in which the probability of an action change
is at least 87% higher than the probability of a state change (see their Result 4), which
aligns with our main result. Later, Moscarini, Ottaviani, and Smith (1998) show that if
the underlying state evolves in every period and is sufficiently persistent, an information
cascade must arise, but it only lasts temporarily, i.e., it must end in finite time. Our
3The symmetry of binary states further amplifies this effect: consider a scenario in which the state has
changed an even number of times, say twice. However, an agent in a cascade would mistakenly perceive
the state as unchanged and therefore have no reason to change their action.
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work builds on their model but with a different focus. Instead of analyzing the short-
term patterns of information cascades, such as the conditions under which they arise or
end, we ask: in the long run, should one expect more volatility in actions or in the state?

In a setting where a single agent repeatedly receives private signals, Hirshleifer and
Welch (2002) examine the effect of memory loss—a situation in which the agent only
recalls past actions but not past signals—on the continuity of the agent’s behavior. They
analyze the equilibrium behavior of a five-period stylized model and show that in a
relatively stable environment, memory loss induces excessive action inertia compared to
a full-recall regime. In contrast, in a more volatile environment, memory loss results
in excessive action impulsiveness.4 Different from their work—which examines how an
agent’s ability to recall past actions and signals affects action fluctuations—our study
investigates the long-term fluctuations in the actions of agents who observe past actions
in a changing environment and compares these fluctuations to those of the underlying
state.

Among a few more recent studies that consider a dynamic state, the efficiency of
learning has been a primary focus of study. For example, Frongillo, Schoenebeck, and
Tamuz (2011) consider a specific environment in which the underlying state follows a
random walk with non-Bayesian agents who use different linear rules when updating.
Their main result is that the equilibrium updating weights may be Pareto suboptimal,
causing inefficiency in learning.5 In a similar but more general environment, Dasaratha,
Golub, and Hak (2020) show that having sufficiently diverse network neighbors with
different signal distributions improves learning. Their idea is that having diverse signals
enables agents to extract the most relevant information from the old and confounded
data, thereby achieving higher efficiency in information aggregation.

In a setup similar to ours, a recent study by Lévy, Pęski, and Vieille (2022) considers
the welfare implication of a dynamic state. In their model, agents observe a random
subsample drawn from all past actions and then decide whether to acquire private signals
that are potentially costly. These model generalizations allow them to highlight the trade-
off between learning efficiency and responsiveness to environmental changes in maximizing
equilibrium welfare. In contrast, we assume that agents observe the full history of past
actions and there is no cost associated with obtaining their private signals. We consider
this canonical sequential learning model without further complications as our focus is on
comparing the long-term relative frequency of action and state changes—a question that
turns out to be nontrivial even in this simple setup.

4Intuitively, as volatility of the environment increases, past actions become less relevant to the current
state. At some point, this information weakens enough so that the amnesiac agent would always follow
her latest signal, but the full-recall agent may not do so at this point. Hence, there is an increase in the
probability of an action change due to amnesia.
5See more studies in the computer science literature, e.g., Acemoglu, Nedic, and Ozdaglar (2008);
Shahrampour, Rakhlin, and Jadbabaie (2013) that consider a dynamic environment with non-Bayesian
agents.

4



θ1

1

s1

a1

2

θ2

s2

a2

3

θ3

s3

a3 ...

...

Figure 1. An illustration of processes (θt) and (at).

2. Model

We follow the setup from Moscarini, Ottaviani, and Smith (1998) closely. Time is
discrete, and the horizon is infinite, i.e., t ∈ N+ = {1, 2, . . .}. There is a binary state
θt ∈ {+1,−1} that evolves over time. Specifically, the state evolves according to a Markov
chain with a symmetric transition probability ε ∈ (0, 1):

P[θt+1 ̸= i|θt = i] = ε, for i ∈ {+1,−1}.

For simplicity, we assume that both states are equally likely at the beginning of time.
Note that this uniform distribution is also the stationary distribution of θt.

A sequence of short-lived agents indexed by time t arrive in order, each acting once
by choosing an action at ∈ {+1,−1}. For each agent t, she obtains a payoff of one if
her action matches the current state, i.e., at = θt and zero otherwise. Before choosing an
action, she receives a binary private signal st ∈ {+1,−1} and observes the history of all
past actions made by her predecessors, ht−1 = (a1, . . . , at−1). Conditional on the entire
sequence of states, the private signals (st) are independent, and each st follows a Bernoulli
distribution Bθt(α) where α ∈ (1/2, 1) is the probability of matching the current state:

P[st = i|θt = i] = α, for i ∈ {+1,−1}.

We assume throughout that the state is sufficiently persistent : for any signal precision
α ∈ (1/2, 1), the probability of a state change ε ∈ (0, α(1− α)). Under this assumption,
Moscarini, Ottaviani, and Smith (1998) show that information cascades can occur, but
they only last temporarily. Equivalently, one can think of this assumption as follows:
in every period, with probability 2ε ∈ (0, 2α(1 − α)) the state will be redrawn from the
set {+1,−1} with equal probability. Thus, the probability of a state change is equal to
ε ∈ (0, α(1− α)).

At any time t, the sequence of events is as follows. First, the agent arrives and observes
the history of all past actions, ht−1. Second, the state θt−1 transitions to θt with a
probability ε of switching. After the state transitions, agent t receives a private signal st
that matches the current state θt with probability α. Finally, she chooses an action at

that maximizes the probability of matching θt, conditional on (ht−1, st) the information
available to her. A graphical illustration of the sequence of events is shown in Figure 1.

5



2.1. Fads. Given that each agent aims to match the current state, as the state evolves,
the best action to take also fluctuates. BHW informally discuss the idea of faddish
behavior as a situation where action changes occur more frequently than state changes.
In other words, fads represent scenarios where there are excessive action changes relative
to the state. To formalize this idea, we denote the fraction of time periods t ≤ n for
which at ̸= at+1 and θt ̸= θt+1 by

Qa(n) :=
1

n

n∑
t=1

1(at ̸= at+1) and Qθ(n) :=
1

n

n∑
t=1

1(θt ̸= θt+1), respectively.

Formally, we say that fads emerge at time n+ 1 if

Qa(n) > Qθ(n). (2.1)

Multiplying both sides of (2.1) by n, the emergence of fads at time n + 1 means that
actions have changed more frequently than the state by time n+ 1.

2.2. Agents’ Beliefs. Let pt := P[θt = +1|ht−1, st] denote the posterior belief of agent
t that the state is positive after observing (ht−1, st) the pair of action history and private
signal. The log-likelihood ratio (LLR) of agent t’s posterior beliefs of the state being +1

over the state being −1 is

Lt = log
pt

1− pt
= log

P[θt = +1|ht−1, st]

P[θt = −1|ht−1, st]
.

We call Lt the posterior LLR at time t. By Bayes’ rule, the posterior LLR at time t is
equal to

Lt = log
P[θt = +1|ht−1]

P[θt = −1|ht−1]
+ log

P[st|θt = +1, ht−1]

P[st|θt = −1, ht−1]
. (2.2)

We refer to the first term in (2.2) as the public LLR at time t and denote it by ℓt. This
is the log-likelihood ratio of the public belief of agent t after observing only the history
of actions ht−1, which we denote by qt := P[θt = +1|ht−1]. Since the private signal is
independent of the history of actions conditional on the current state, the second term
in (2.2) reduces to the LLR induced by the signal itself, which is equal to cα := log α

1−α

if st = +1 and −cα if st = −1. Therefore, depending on the realization of the private
signal, the posterior LLR at time t evolves as follows:

Lt =

ℓt − cα if st = −1,

ℓt + cα if st = +1.
(2.3)

2.3. Agents’ Behavior. The optimal action for agent t is the action that maximizes
her expected payoff conditional on the information available to her:

at ∈ argmax
a∈{−1,+1}

P[θt = a|ht−1, st].
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Thus at = +1 if Lt > 0 and at = −1 if Lt < 0. When Lt = 0, agent t is indifferent
between both actions. We assume that in this case, she would follow what her immediate
predecessor did in the previous period, i.e., at = at−1.6 This tie-breaking rule differs
from the one used in Moscarini, Ottaviani, and Smith (1998), where indifferent agents
are assumed to follow their own private signals. We make this assumption so that any
action changes are driven by agents’ strict preference for one action over another, rather
than by the specific choice of the tie-breaking rule.

2.4. Cascade and Learning Regions. As mentioned before, an information cascade
occurs when the social information inferred from others’ past actions outweighs an agent’s
private signal, leading the agent to disregard their private information. From (2.3), we
see that when |ℓt| > cα, the sign of Lt—and therefore the optimal action for agent t—is
determined solely by the sign of ℓt, regardless of st. Thus, in this case, at = +1 if ℓt > cα

and at = −1 if ℓt < −cα.
Similarly, when |ℓt| = cα, the tie breaking rule at indifference implies that agent t will

choose the same action as agent t − 1, regardless of the realization of st. Furthermore,
note that at−1 is equal to the sign of ℓt.7 Thus, we refer to the region of the public LLR
where |ℓt| ≥ cα as the cascade region. Conversely, when |ℓt| < cα, agent t chooses the
action according to her private signal (i.e., at = st), and we refer to this region as the
learning region.

3. Results

3.1. A Benchmark. As a benchmark, we briefly discuss the case in which each short-
lived agent only observes her own private signal but not the actions of her predecessors.
In this scenario, agent t simply follows her private signal st, as it is her only source of
information about the state.8 Consequently, in the long run, agents’ actions fluctuate as
frequently as their private signals. By the strong law of large numbers,

lim
n→∞

Qa(n) = P[st ̸= st+1] almost surely.

A straightforward calculation then shows that

P[st ̸= st+1] = (1− α2)(1− ε) + α2ε.

First, observe that the above probability is strictly greater than ε, which is the long-
term frequency of state changes (see details in Section 4.2). This is intuitive since in

6Our results do not depend on this assumption and are robust to any tie-breaking rule that is common
knowledge.
7To see this, suppose without loss of generality that ℓt = cα, so sign(ℓt) = +1. If st = +1, then
Lt = ℓt + cα > cα, which leads to at = +1. If st = −1, then Lt = ℓt − cα = 0 and by the tie-breaking
rule, at = at−1. In either case, at = at−1, which is equal to sign(ℓt) = +1. This is because if at−1 = −1,
it would follow from ℓt = cα that ℓt−1 > cα, which implies at−1 = +1. A contradiction.
8This case is behaviorally equivalent to a scenario in which the state lacks sufficient persistence, thereby
preventing temporary information cascades and causing agents to rely solely on their private signals.
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this benchmark, agents always follow their signals, so actions exhibit the same level of
volatility as the signals, which are more volatile than the state itself. Additionally, as
the private signal becomes less noisy (i.e., as α → 1), the long-run frequency of action
changes converges to that of state changes. This is because, as signals become increasingly
precise, unnecessary changes in actions decrease. In the limit, when signals are perfectly
informative, actions change as often as the state in the long run.

3.2. Public Actions. Now, we turn to our main setting, where each short-lived agent
observes both her private signal and the actions of her predecessors. Since the state is
sufficiently persistent, information cascades arise temporarily, during which agents mimic
their predecessors rather than respond to their private signals. As a result, compared to
the benchmark, action changes are less frequent. Our main result shows that, despite
these periods of cascade-driven inaction, fads still almost surely emerge in the long run.
Recall that in (2.1) we defined the emergence of fads at time n + 1 as a higher relative
frequency of action changes compared to state changes.

Theorem 1. For any signal precision α ∈ (1/2, 1) and probability of state change ε ∈
(0, α(1− α)), fads emerge in the long run almost surely:

lim
n→∞

Qa(n) > lim
n→∞

Qθ(n) almost surely.

Thus Theorem 1 shows that in the long run, fads are guaranteed to emerge under
social learning, even when the underlying state evolves slowly and there are temporary
information cascades during which agents do not change their actions. As an example,
consider a private signal that matches the current state 80 percent of the time. When
the probability of a state change is 1 percent, the state changes on average once every
100 periods. Meanwhile, the average time between action changes is strictly less than 61
periods.9 This implies that, over time, action changes will occur more frequently than
state changes, leading to faddish behavior.

The idea behind the proof of Theorem 1 is as follows. Intuitively, as the state evolves,
the older social information on which a cascade is built becomes less relevant to the
current agent. Consequently, agents periodically stop mimicking past actions and begin
responding to their private information. This periodic responsiveness to private signals
drives fluctuations in actions since agents at these times are susceptible to opposing news.
Formally, we show that once the agent’s public belief exits the cascade region, their action
either changes or the public belief re-enters the same cascade region. We upper bound
the probability of the latter event, thus providing an upper bound for the expected time
between action switches (Proposition 1). We then compare this upper bound to the
expected time between state changes and show that the former is strictly less than the
latter. Finally, our main result (Theorem 1) translates the expected times between action
9This follows from Proposition 1 in Section 4.2 by substituting α = 0.8 and ε = 0.01 into M(α, ε),
yielding M(0.8, 0.01) ≈ 60.7.
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α \ ε 0.05 0.1 0.2
0.51 16,766 (5,081) 28,564 (10,055) 42,128 (20,024)
0.75 15,240 (5,100) 26,149 (10,034) –
0.9 14,252 (5,096) – –

Table 1. The numerical simulations show the number of action and state
changes (values in parentheses) across different values of α and ε ∈ (0, α(1−
α)) over 100,000 periods.

and state changes into their long-run frequencies and concludes that actions change more
frequently than the state.

Note that action changes are not independent events, and consequently, we cannot
directly establish the connection between the expected time between changes and its
long-run frequency using the standard law of large numbers. To address this, we study
the process of the (random) time interval between action changes, which as shown in
Lemma 2 in the appendix, has well-defined moments. In addition, since the state changes
over time, the agent’s public belief also ceases to be a martingale—an important tool in
analyzing the long-term outcome of learning in a fixed state model.10 Nevertheless, it is
still a Markov process. Given the Markov property, we analyze the transitional patterns
of the public belief across different regions (see Lemma 1) and use them to study the
expected time between action switches.

We assume a sufficiently persistent state for two reasons. First, as discussed before,
when the state is not sufficiently persistent—so that temporary information cascades
never arise—agents would always follow their signals and change their actions accord-
ingly. Hence, as in our benchmark, action clearly changes more frequently than the state.
Second, even with a sufficiently persistent state, it is a priori unclear whether the state
or the action would change more often. As the likelihood of state changes decreases,
action changes also slow down. This is because when state changes are less frequent, past
actions become more informative about the current state; consequently, cascades tend to
last longer, leading to extended periods of action inertia. Our main result suggests that,
over time, this prolonged action inertia is eventually overtaken by action impulsiveness,
resulting in excessive changes in actions relative to the state.

3.3. Numerical Simulations. To illustrate our main result, we simulate the frequen-
cies of action and state changes under different values of signal precision (α) and state
volatility (ε) over 100, 000 periods. Table 1 displays the results of these simulations.

These simulations confirm our main result: for all pairs of parameter values considered,
we see that action changes are more frequent than state changes. Next, we explore how
the frequencies of action and state changes vary across different parameter values. In
the first column of Table 1, when the probability of state change is fixed at 0.05, the
10For example, it is essential in proving asymptotic learning (Smith and Sørensen, 2000) for unbounded
signals.
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frequency of action changes decreases as signal precision increases, aligning with the
intuition that more precise signals help reduce unnecessary action changes. However,
even with high signal precision (α = 0.9), actions still change at least twice as often as the
state, underscoring the persistence of faddish behavior despite increasingly informative
signals. Conversely, as state volatility increases, both action and state changes become
more frequent, as shown in the first row of Table 1. Yet, the ratio of action to state
changes declines from approximately 3.3 to 2.1, suggesting that state volatility directly
impacts the frequency of state changes more than that of action changes.

4. Analysis

In this section, we analyze how the agent’s public belief evolves in both the learning and
cascade regions. These dynamics allow us to establish an upper bound on the expected
time between action changes. We then compare this upper bound to the expected time
between state changes and show that the former is strictly less than the latter.

4.1. The Belief Dynamics.

Cascade Region. It is well-known that in this model, if the state is fixed (ε = 0), an
information cascade will be triggered and, once triggered, will last indefinitely. This is
because once the agent’s public belief enters the cascade region, it remains there, as all
subsequent agents face the same problem as the initial agent who started the cascade
(Banerjee, 1992; Bikhchandani et al., 1992). Since signals are binary and imperfectly
informative, the resulting cascade is formed based on limited information and thus can
be incorrect with positive probability.11

However, if the state is changing (ε > 0), the behavior of the agent’s public belief
becomes more complex. To see this, consider the case where the public LLR at time t

satisfies ℓt ≥ |cα|, and suppose t is the time at which the public LLR first enters the
cascade region from the learning region. In this case, agent t follows the action of her
immediate predecessor, so at contains no additional information about θt beyond what
at−1 provides. Meanwhile, between time t and t+1, the state may change with probability
ε. Since θt follows a Markov chain, conditional on θt, the history ht provides no further
information about θt+1. Thus, while ℓt remains in the cascade region, the corresponding
public belief updates deterministically as follows:

qt+1 = P[θt+1 = +1|ht] = (1− ε)qt + ε(1− qt)

= (1− 2ε)qt + (2ε)
1

2
. (4.1)

11More generally, in a fixed state model with non-binary signals, whether agents eventually all choose
the correct action depends on whether the private signals are unbounded or bounded. Our case with
binary signals and α ∈ (1/2, 1) is a special case of bounded signals.
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Equivalently, we can write it in terms of the public LLR:

ℓt+1 = log
qt+1

1− qt+1

= log
(1− ε)eℓt + ε

1− ε+ εeℓt
. (4.2)

From (4.1), we observe that qt+1 tends toward 1/2, so eventually, ℓt+1 exits the cas-
cade region. Intuitively, having a changing state depreciates the value of older social
information, as actions observed in earlier periods become less relevant to the current
agent. Consequently, after a finite number of periods, the agent’s public belief gradually
converges to 1/2, so that a cascade supported by this belief eventually ceases. This is
the main insight from Moscarini, Ottaviani, and Smith (1998), where they show that
information cascades, if they arise, can only be temporary under a changing state.

Learning Region. Next, we consider the learning region where |ℓ| < cα. If the state is
fixed (ε = 0), then the agent at time t simply follows their private signal: at = st. As a
result, at time t+ 1, the agent’s public belief coincides with their posterior belief:

qt+1 = P[θ = +1|ht−1, at] = P[θ = +1|ht−1, st] = pt.

Hence, the corresponding log-likelihood ratios also coincide, i.e., ℓt = Lt, and so ℓt also
evolves according to (2.3).

In contrast, if the state changes with probability ε > 0 in every period, upon observing
the latest history, each agent needs to consider the possibility that the state may have
changed after the most recent action was taken. However, neither the learning nor the
cascade region is affected by a changing state as the state only transitions after the history
of past actions is observed. It follows from Bayes’ rule that

ℓt+1 = log
qt+1

1− qt+1

= log
P[θt+1 = +1|ht−1, at]

P[θt+1 = −1|ht−1, at]

= log

∑
i∈{−1,+1} P[θt+1 = +1, at|ht−1, θt = i] · P[θt = i|ht−1]∑
i∈{−1,+1} P[θt+1 = −1, at|ht−1, θt = i] · P[θt = i|ht−1]

. (4.3)

Since θt follows a Markov chain and at = st in the learning region, conditional on θt, both
θt+1 and at are independent of the history ht−1 and of each other. Therefore, the public
LLR evolves as follows:

ℓt+1 =

log (1−ε)αeℓt+ε(1−α)

εαeℓt+(1−ε)(1−α)
:= f+(ℓt) if st = +1,

log (1−ε)(1−α)eℓt+εα

ε(1−α)eℓt+(1−ε)α
:= f−(ℓt) if st = −1.

(4.4)

Note that both f+ and f− are strictly increasing. This means that conditional on receiving
any signal, the agent with a higher public belief has a higher posterior belief. In addition,
it is easy to check that f+(ℓ) > ℓ and f−(ℓ) < ℓ. This indicates that, relative to her prior,
an agent’s posterior belief increases when she receives a positive signal and decreases
when she receives a negative signal.
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From (4.4), we see that the magnitude difference between ℓt and ℓt+1 depends on
both the realization of the private signal st and the current value of ℓt. The following
lemma summarizes the transitional patterns of the public LLR when it is in the learning
region. At any time t, we say that an action is opposing to the current public belief if
at ̸= sign(ℓt) and supporting otherwise. The following lemma is in spirit close to the
overturning principle (Smith and Sørensen, 2000), but it applies to a changing state.

Lemma 1. For any ℓt such that |ℓt| < cα, the following two conditions hold.
(i) at ̸= sign(ℓt) implies that sign(ℓt+1) = −sign(ℓt).
(ii) at = at+1 = sign(ℓt) implies that |ℓt+2| ≥ cα.

The first part of this lemma states that a single opposing action is sufficient to overturn
the sign of the public LLR. The second part indicates that initiating a cascade requires at
most two supporting actions. Intuitively, because the public LLR in the learning region
tends to be moderate, it is sensitive to opposing evidence; at the same time, although
the public belief adjusts more conservatively due to the possibility of a changing state,
consecutive observations of supporting evidence are still sufficient to trigger a cascade.

Another important observation is that, regardless of whether the state is fixed or chang-
ing, the process (ℓt) forms a Markov chain.12 In the case of a fixed state, the state space
of this Markov chain is finite since the magnitude difference between ℓt and ℓt+1 is a con-
stant for any given signal precision. However, in the case of a changing state, the state
space becomes infinite, as these magnitude differences also depend on the current value
of ℓt.13 This poses a significant challenge in finding its stationary distribution, which is
required to calculate the exact expected time between sign switches. We circumvent this
problem by providing an upper bound to this expected time instead.

4.2. Expected Time Between Switches. We first calculate the expected time be-
tween state changes. Since θt follows a simple two-state Markov chain with a symmetric
transition probability ε, the expected time between state changes is inversely proportional
to the likelihood of a state change. To illustrate this, let x represent the expected time
between state changes. Then x satisfies the following equation:

x = ε+ (1− ε)(1 + x),

which implies that x = 1/ε. That is, a higher likelihood of state changes corresponds to
a shorter average time between changes.

To calculate the expected time between action changes, note that while at is not a
Markov chain, it is a function of a Markov chain; more specifically, we have at = sign(ℓt+1).
However, as discussed earlier, this Markov chain is complicated—with infinitely many pos-
sible values and different transition probabilities—making it difficult to directly analyze
12This is because conditional on the state θt, the private signal st is independent of ℓτ , for any τ < t.
13In fact, in almost all cases, two consecutive opposing signals do not exactly offset each other, i.e.,
f+(f−(ℓ)) ̸= ℓ and vice versa.
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the expected time between its sign switches. Therefore, we establish an upper bound,
which also bounds the expected time between action changes. To do so, consider the
maximum length of any cascade. Recall that such a maximum exists because the public
belief in the cascade region slowly converges toward uniformity. Meanwhile, for any given
signal precision and probability of a state change, no cascade can last longer than the
one starting at f+(cα), which is the supremum of the public LLR. Hence, from (4.2), we
can calculate a tight upper bound on the length of any cascade.

Following Moscarini, Ottaviani, and Smith (1998), we denote this upper bound by
K(α, ε) where14

K(α, ε) =
log(1− 2α(1− α))

log(1− 2ε)
.

It is straightforward to see that the upper bound K(α, ε) decreases in both α and ε. As
private signals become less precise, cascades contain more information relative to private
signals, potentially extending the duration of a cascade. Meanwhile, as the state becomes
less volatile, temporary cascades last longer because social information depreciates at a
lower rate. Together, this suggests that prolonged cascades may result from either less
precise private signals or a more stable environment.

Now, we are ready to provide an upper bound for the expected time between sign
switches of the public LLR. For any positive integer i = 1, 2, . . ., let Ti denote the random
time at which the public LLR switches its sign for the i-th time, with T0 = 0. Let
Di = Ti − Ti−1 denote the (random) time elapsed between the (i − 1)-th and i-th sign
switch.

Proposition 1. For any positive integers i ≥ 2, conditional on the public LLR switching
its sign for the (i− 1)-th time, the expected time to the next sign switch satisfies

E[Di|ℓTi−1
] < 1 +

K(α, ε)

2α(1− α)
=: M(α, ε).

This proposition states that, on average, the public LLR is expected to change its
sign at least once every M(α, ε) periods. For example, when α = 0.8 and ε = 0.01,
M(0.8, 0.01) is approximately 61, indicating that the public LLR experiences at least
one sign switch every 61 periods. Furthermore, notice that M(α, ε) decreases in α, so
M(1/2, ε) is the maximum upper bound for any ε ∈ (0, α(1 − α)). Intuitively, when
14For completeness, we provide a similar calculation of K(α, ε) as in Section 3.B of Moscarini, Ottaviani,
and Smith (1998). Fix any arbitrary α ∈ (1/2, 1) and ε ∈ (0, α(1− α)). Denote m as the supremum of
public belief, where m = (1−ε)α2+ε(1−α)2

α2+(1−α)2 . Since the public belief in a cascade evolves deterministically
according to (4.1), after h periods, the public belief starting at m equals

g(h) := ε

h−1∑
i=1

(1− 2ε)i + (1− 2ε)hm.

This implies that after spending h periods in the cascade region, any public belief would have a value
strictly lower than g(h). Thus, whenever g(h) ≤ α, or equivalently (1−2ε)h+1 ≤ 1−2α(1−α), the public
LLR with value g(h) must have exited the cascade region. Hence, the maximum number of periods that
the public LLR can stay in the cascade region is log(1−2α(1−α))

log(1−2ε) .

13



private signals are only weakly informative, agents rely more on social information. As a
result, information cascades are more likely to arise, and so is action inertia.

We thus illustrate the proof idea of Proposition 1 using a weakly informative signal.
Suppose that α = 1/2 + δ for a small δ > 0. Since K(α, ε) decreases in α, K(1

2
, ε) is the

greatest upper bound for the length of any cascade as δ approaches zero. Upon exiting
a cascade, the probability that the public LLR switches its sign is about 1/2, since the
agent, who follows her private signal, receives either a positive or negative signal with
nearly equal probability. Therefore, the expected time between sign switches is bounded
from above by a geometric distribution:

1 +
∞∑
i=1

i

2i
K(

1

2
, ε) = 1 +

2 log 2

− log(1− 2ε)
= M(1/2, ε),

and M(1/2, ε) decreases in ε. Thus, for sufficiently small ε, M(1/2, ε) ≈ (log 2)/ε, which
is strictly less than 1/ε, the expected time between state changes.15 Given the one-to-one
mapping between the agent’s action and their public LLR, Proposition 1 immediately
implies the following result.

Corollary 2. The expected time between action changes is strictly less than the expected
time between state changes.

That is, on average, actions change more quickly than the state. For instance, when
the probability of a state change is equal to 0.05, the state changes every twenty periods
on average. In comparison, the maximum time for an action change is less than fourteen
periods. Building on this, Theorem 1 formally shows the connection between the expected
time between action changes and their long-run frequency, demonstrating that a shorter
expected time implies a higher frequency.

5. Conclusion

We study the long-term behavior of agents who receive a private signal and observe the
past actions of their predecessors in a changing environment. As the state evolves, the
best action to take also fluctuates. We show that, in the long run, the frequency of action
changes exceeds that of state changes, indicating that fads emerge under social learning
in a dynamic environment. This result holds even with the occurrence of temporary
information cascades in which agents simply mimic the action of their predecessors.

One may wonder if the main result is driven by the high frequency of action changes
when the posterior belief is around 1/2. Accordingly, we can further restrict the definition
of fads to exclude consecutive action changes, i.e., cases where at ̸= at−1 and at−1 ̸= at−2.
Simulation results show that even under this more restricted definition of fads, actions
still change more frequently than the state. For example, with α = 0.75, ε = 0.05,

15See Claim 3 in the appendix.
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and a total of 100, 000 periods, action changes approximately 8,150 times, which is more
frequent than the number of state changes, which is about 5,100 times.

An interesting extension would be to study the frequency of action changes for a single
long-lived agent who repeatedly receives private signals about a changing state. We con-
jecture that, in this case, action changes would be less frequent than in our model, where
only past actions are observable, but still more frequent than state changes. Intuitively,
removing noisy observations of others’ private signals (i.e., their actions) could reduce
unnecessary action changes. If so, this would highlight the role of observational learning
in accelerating action fluctuations, particularly in a slowly evolving environment. We
leave this for future research, as it would require a different proof technique from the
approach used here.

There are several possible avenues for future research. Recall that Proposition 1 implies
that M(α, ε) is an upper bound to the expected time between action changes. One could
ask whether this upper bound M(α, ε) is tight, and if so, for any finite time N , whether
the number of action changes would be close to N/M(α, ε). Based on the simulation
results, we conjecture that it is not a tight bound. E.g., we let α = 0.9 and ε = 0.05, and
N = 100, 000. Since M(0.9, 0.05) ≈ 11.5, it implies that within these hundred thousand
periods, the action should change at least about 8700 times. However, our numerical
simulation shows that the action changes about 14, 200 times, almost double the number
suggested by M(0.9, 0.05). Furthermore, our simulations suggest that as the private signal
becomes less informative and the state changes more slowly, i.e., when α approaches 1/2
and ε approaches 0 at the same rate, the ratio between the frequency of action changes
and state changes approaches a constant that is close to 4. This suggests that achieving
a very accurate understanding of fads in this regime might be possible.
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Appendix A. Proofs

Proof of Lemma 1. Fix any arbitrary α ∈ (1/2, 1) and ε ∈ (0, α(1 − α)). Consider first
the case where ℓt ∈ (0, cα). For part (i), suppose at = −1. Given that ℓt ∈ (0, cα) is
in the learning region, we have st = at = −1. Since f−(·) in (4.4) is strictly increasing,
and f−(cα) = 0, we have f−(ℓt) < 0 for all ℓt ∈ (0, cα). Thus, it follows from (4.4) that
ℓt+1 = f−(ℓt) and sign(f−(ℓt)) = −1 = −sign(ℓt). For part (ii), it suffices to show that
f+(f+(0)) ≥ cα as f+(·) is strictly increasing. Let cu = f−1

+ (cα) denote the threshold
at which exactly one positive signal is required for the public LLR to enter the cascade
region on the positive action. This threshold is given by

cu = log
(1− α)(α− ε)

α(1− α− ε)
∈ (0, cα).

Note that f+(0) > cu for all ε ∈ (0, α(1−α)), and thus f+(f+(0)) > f+(cu). By definition,
f+(f+(0)) > f+(cu) = f+(f

−1
+ (cα)) = cα, as required. The case where ℓt ∈ (−cα, 0) follows

an analogous argument. □

Proof of Proposition 1. Fix any arbitrary α ∈ (1/2, 1), ε ∈ (0, α(1−α)) and some positive
integer i ≥ 2. Recall that Ti−1 is the time at which the public LLR changes its sign for the
i− 1-th time and Di = Ti−Ti−1. Consider ℓTi−1

> 0 and there are three disjoint intervals
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for the value of ℓTi−1
: (i) [cu, cα) where cu = f−1

+ (cα); (ii) (0, cu) and (iii) [cα, f+(cα)). We
will show that for all cases, E[Di|ℓTi−1

] < 1 + K(α,ε)
2α(1−α)

, where K(α, ε) is the upper bound
on the length of any cascade.

Denote by π(ℓ) the probability of receiving a positive signal conditional on the public
LLR being ℓ.16 By the law of total probability,

π(ℓ) = α · eℓ

1 + eℓ
+ (1− α) · 1

1 + eℓ
=

1 + α(eℓ − 1)

1 + eℓ
, (A.1)

and it is strictly increasing in ℓ. Thus,

π̄ := sup
ℓ∈(0,cα)

π(ℓ) = 1− 2α(1− α).

Let κ(ℓ) denote the length of a positive cascade triggered by receiving a positive signal
conditional on the public LLR being ℓ. Let L(ℓ) represent the value of the public LLR
after exiting the cascade region for the first time. We use ⌊K(α, ε)⌋ ≥ 1 to denote the
greatest integer less than or equal to K(α, ε).

Case (i). Suppose ℓTi−1
∈ [cu, cα). By part (i) of Lemma 1, since ℓTi−1

is in the learning
region, one opposing signal is sufficient to change the sign of ℓTi−1

. Thus, the expected
time to the next sign switch is

E[Di|ℓTi−1
] = 1− π(ℓTi−1

) + π(ℓTi−1
)
(
κ(ℓTi−1

) + E[Di|L(ℓTi−1
)]
)
,

and by the definition of π̄, we have

E[Di|ℓTi−1
] < 1− π̄ + π̄

(
⌊K(α, ε)⌋+ E[Di|L(ℓTi−1

)]
)
. (A.2)

Note that there are two possible cases for the value of L(ℓTi−1
): either L(ℓTi−1

) ∈ [cu, cα)

or L(ℓTi−1
) ∈ (0, cu). If it is the former case, then taking the supremum on both sides of

(A.2) and rearranging,

sup
cu≤ℓTi−1

<cα

E[Di|ℓTi−1
] ≤ 1 +

π̄

1− π̄
⌊K(α, ε)⌋. (A.3)

If it is the latter case, by the definition of π̄,

E[Di|L(ℓTi−1
)] < 1− π̄ + π̄

(
1 + E[Di|f+(L(ℓTi−1

))]
)
.

Substituting the above inequality into (A.2),

E[Di|ℓTi−1
] < 1− π̄ + π̄

(
⌊K(α, ε)⌋+ 1− π̄ + π̄

(
1 + E[Di|f+(L(ℓTi−1

))]
))

.

Since f+(·) is strictly increasing, by part (ii) of Lemma 1, f+(L(ℓTi−1
)) ∈ [cu, cα). Thus,

taking the supremum on both sides and rearranging,

sup
cu≤ℓTi−1

<cα

E[Di|ℓTi−1
] ≤ 1− π̄ + (⌊K(α, ε)⌋+ 1)π̄

1− π̄2
≤ 1 +

π̄

1− π̄
⌊K(α, ε)⌋,

16For ease of notation, we suppress its dependence on α.
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where the second inequality holds since ⌊K(α, ε)⌋ ≥ 1.
Case (ii). Suppose ℓTi−1

∈ (0, cu). By part (i) of Lemma 1 and the definition of π̄, the
expected time to the next sign switch is bounded above:

E[Di|ℓTi−1
] < (1− π̄) + π̄(1 + E[Di|f+(ℓTi−1

)]).

Since f+(·) is strictly increasing, part (ii) of Lemma 1 implies that f+(ℓTi−1
) ∈ [cu, cα). It

then follows from (A.3) that

E[Di|ℓTi−1
] <

π̄2(⌊K(α, ε)⌋ − 1) + 1

1− π̄
. (A.4)

Case (iii). Suppose ℓTi−1
∈ [cα, f+(cα)). In this case, after at most ⌊K(α, ε)⌋ periods,

the public LLR initiated at ℓTi−1
would have exited the cascade region. Hence, the

expected time to the next sign switch is bounded above:

E[Di|ℓTi−1
] ≤ ⌊K(α, ε)⌋+ E[Di|L(ℓTi−1

)].

Again, there are two possible cases for L(ℓTi−1
): either L(ℓTi−1

) ∈ [cu, cα) or L(ℓTi−1
) ∈

(0, cu). If it is the former case, it follows from (A.3) that

E[Di|ℓTi−1
] < 1 +

1

1− π̄
⌊K(α, ε)⌋. (A.5)

If it is the latter case, then it follows from (A.4) that

E[Di|ℓTi−1
] < ⌊K(α, ε)⌋+ π̄2(⌊K(α, ε)⌋ − 1) + 1

1− π̄

= ⌊K(α, ε)⌋+ 1 + π̄ +
π̄2

1− π̄
⌊K(α, ε)⌋ ≤ 1 +

1

1− π̄
⌊K(α, ε)⌋.

Now, note that the maximum of these three upper bounds given in (A.3) to (A.5)
is 1 + 1

1−π̄
⌊K(α, ε)⌋. Furthermore, by definition, ⌊K(α, ε)⌋ ≤ K(α, ε). Therefore, we

conclude that
E[Di|ℓTi−1

> 0] < 1 +
K(α, ε)

2α(1− α)
.

The case where ℓTi−1
< 0 follows from an analogous argument. □

Claim 3. M(1/2, ε) < 1/ε for all ε ∈ (0, 1/4).

Proof. Recall that

M(1/2, ε) = sup
α∈(1/2,1)

M(α, ε) = 1 +
2 log 2

− log(1− 2ε)
,

and rearranging, we have M(1/2, ε) < 1/ε if

2 log 2 < −(
1

ε
− 1) log(1− 2ε)

since ε ∈ (0, 1/4). By the L’Hôpital’s rule,

lim
ε→0

−(
1

ε
− 1) log(1− 2ε) = lim

ε→0
2
(1− ε)2

1− 2ε
= 2 > 2 log 2.
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Since −(1
ε
− 1) log(1 − 2ε) is strictly increasing in ε, we conclude that M(1/2, ε) < 1/ε

for all ε ∈ (0, 1/4). □

Since M(α, ε) decreases in α, it follows from Claim 3 and Proposition 1 that for all
α ∈ (1/2, 1) and ε ∈ (0, α(1− α)),

M(α, ε) < 1/ε. (A.6)

Before proceeding to the proof of Theorem 1, we provide the following lemma, which
will be useful. This lemma shows that the process (Di) has well-defined moments. In par-
ticular, it implies that there is a finite uniform upper bound to its second moment E[D2

i ],
which is required to apply the standard martingale convergence theorem. Intuitively,
since any cascade must end after K(α, ε) periods, the probability that Di is larger than
some finite periods decreases exponentially fast, and so Di must have finite moments.

Lemma 2. For every r ∈ {1, 2, . . .} there is a constant cr that depends on α and ε such
that for all i, E[|Di|r] < cr. I.e., each moment of Di is uniformly bounded, independently
of i.

Proof. Fix any arbitrary α ∈ (1/2, 1), ε ∈ (0, α(1− α)) and some positive integer i ≥ 2.
Suppose that ℓTi−1

> 0 and so Di = Ti − Ti−1 is the time elapsed from a positive public
LLR to a negative one. For any n ≥ 2, we denote the minimum number (which may not
be an integer) of temporary cascades required for Di > n by

k(n) := max
{ n− 1

⌊K(α, ε)⌋
, 1
}
.

Recall that π̄ is the supremum of the probability of receiving a positive signal conditional
on the public LLR being ℓ for all ℓ ∈ (0, cα). By part (ii) of Lemma 1, for any n ≥ 2, the
probability of the event {Di > n} is bounded above:

P[Di > n] < π̄2+(⌊k(n)⌋−1).

Since Di is a positive random variable, it follows that for any p > 0,

lim
n→∞

npP[|Di| > n] = lim
n→∞

np

1/P[Di > n]

< lim
n→∞

np

(1/π̄)1+⌊k(n)⌋ = 0. (A.7)
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For any r ≥ 1, the r-th moment of |Di| satisfies

E[|Di|r] =
∫ ∞

0

P[|Di|r > t]dt

< 1 +

∫ ∞

1

P[Di > y]ryr−1dy

= 1 +
∞∑
n=1

∫ n+1

n

P[Di > y]ryr−1dy

< 1 +
∞∑
n=1

P[Di > n]r(n+ 1)r−1,

where the second inequality follows from a change of variable y = t1/r. Since (A.7) implies
that P[Di > n] < Cn−p for some nonnegative constant C, it follows that for any p > r,

E[|Di|r] < 1 + rC

∞∑
n=1

(n+ 1)r−1

np

< 1 + r2r−1C
∞∑
n=1

1

np−r+1
< ∞,

which holds for all i. Hence, for every r ∈ {1, 2, . . .}, there exists a constant cr =

1 + r2r−1C
∑∞

n=1
1

np−r+1 , independently of i, that uniformly bounds E[|Di|r]. □

Proof of Theorem 1. Fix any arbitrary α ∈ (1/2, 1) and ε ∈ (0, α(1−α)). Since θt follows
a two-state Markov chain with a symmetric transition probability ε, (1(θ1 ̸= θ2),1(θ2 ̸=
θ3), . . .) is a sequence of i.i.d. random variables. By the strong law of large numbers,

lim
n→∞

Qθ(n) := lim
n→∞

1

n

n∑
t=1

1(θt ̸= θt+1) = P[θt ̸= θt+1] = ε almost surely.

Let Φ = (F1,F2, . . .) be the filtration where each Fi = σ(D1, . . . ,Di) and thus Fj ⊆ Fi

for any j ≤ i. So the process (D1,D2, . . .) is adapted to Φ since each Di is Fi-measurable.
By Proposition 1 and (A.6), there exists δ = 1/ε−M(α, ε) > 0 such that for all i ≥ 2,

E[Di|ℓTi−1
] < 1/ε− δ.

By the law of iterated expectation and the Markov property of the public LLR,

E[Di|Fi−1] = E[E[Di|ℓTi−1
,Fi−1]|Fi−1] < 1/ε− δ. (A.8)

Let Xi = Di − E[Di|Fi−1] for all i ≥ 2 and since Fi−1 ⊆ Fi, each Xi is Fi-measurable.
Denote a partial sum of the process (Xi)i≥2 by

Yn = X2 +
1

2
X3 + · · ·+ 1

n− 1
Xn.
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By definition, E[Xi|Fi−1] = 0 for all i ≥ 2. Since each Yn−1 is Fn−1-measurable,

E[Yn|Fn−1] = E[
n∑

i=2

1

i− 1
Xi|Fn−1] = Yn−1 +

1

n− 1
E[Xn|Fn−1] = Yn−1,

and so the process (Yn)n forms a martingale.
By Lemma 2 and (A.8), both E[D2

i ] and E[Di|Fi−1] are uniformly bounded. Therefore,
E[X2

i ] is also uniformly bounded for all i ≥ 2. Furthermore, since E[XiXj] = 0 for any
i ̸= j, it then follows that for all n ≥ 2,

E[Y 2
n ] =

n∑
i=2

1

(i− 1)2
E[X2

i ] < ∞.

By the martingale convergence theorem, Yn converges almost surely. It then follows from
Kronecker’s lemma that17

lim
n→∞

1

n− 1
(X2 + · · ·Xn) = 0 almost surely.

Thus, by the definition of Xi, we can write

lim
n→∞

1

n− 1

n∑
i=2

Di = lim
n→∞

1

n− 1

n∑
i=2

E[Di|Fi−1] almost surely.

It follows from (A.8) that

lim
n→∞

1

n− 1

n∑
i=2

Di ≤ 1/ε− δ < 1/ε almost surely. (A.9)

Since at = sign(ℓt+1) for all t ≥ 2,

lim
n→∞

Qa(n) = lim
n→∞

1

n

n∑
t=1

1(at ̸= at+1) = lim
n→∞

1

n− 1

n∑
t=2

1(sign(ℓt+1) ̸= sign(ℓt+2)).

By the definitions of Ti and Di,

1

n− 1

n∑
t=2

1(sign(ℓt+1) ̸= sign(ℓt+2)) =
n− 1

Tn − T1

=
n− 1∑n
i=2 Di

.

Hence, we conclude from (A.9) that

lim
n→∞

Qa(n) = lim
n→∞

n− 1∑n
i=2Di

> ε = lim
n→∞

Qθ(n) almost surely.

□

17This result is also known as the strong law for martingales (See p.238, Feller (1966, Theorem 2)).
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