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Abstract. We study how volatile agents’ behavior is in a social learning environment
with a changing state. We consider a simple sequential social learning model where
rational agents arrive in order, each acting only once, and the underlying unknown state
constantly evolves. Each agent receives a private signal, observes all past actions of
others, and chooses an action to match the current state. Because the state changes
over time, cascades cannot last forever, and actions also fluctuate. We show that actions
change less often than private signals but, despite the presence of temporary information
cascades, still more often than the underlying state in the long run.

1. Introduction

In many economic environments, individuals rely on the observed decisions of others to
guide their own choices. At the same time, the conditions they are learning about—such
as market demand, the value of new technologies, or organizational constraints—often
change over time. In these situations, learning is not simply a matter of identifying a fixed
state of the world, but of adjusting actions as new information arrives and circumstances
evolve. This raises a natural question: does behavior adjust more or less frequently
than the underlying conditions themselves? Understanding this relative frequency of
adjustment is important in many domains in which behavioral volatility, or the lack
thereof, can generate persistent structural mismatches and decouple market outcomes
from underlying fundamentals.

As an illustrative example, consider a university student choosing a field to major in. In
addition to her own private research, she can infer future labor-market prospects, such as
wages and working conditions, by observing the choices of recent graduates. However, this
social information is only partially relevant, since the relative attractiveness of different
fields evolves over time. As a result, the popularity of certain majors may fluctuate,
and these fluctuations may not perfectly reflect underlying changes in market demand,
potentially creating a wedge between labor supply and demand. Similarly, in financial
markets, when professional traders decide whether to buy or sell a stock, they often rely
on past trading volumes to infer an asset’s intrinsic value, which itself changes over time.
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Consequently, trading behavior that adjusts too slowly or too quickly to fundamentals
can generate price deviations from intrinsic value, giving rise to speculative bubbles and
fads (Camerer, 1989; Aggarwal and Rivoli, 1990).

To understand the extent to which actions fluctuate in these settings, we consider
a canonical sequential social learning model in which agents aim to match a binary
state. Unlike the standard fixed-state framework (Banerjee, 1992; Bikhchandani et al.,
1992), the state evolves over time: in each period, it switches with a small, symmetric
probability.1 Agents arrive sequentially, each acting once and receiving a positive payoff
if her action matches the current state. Before making a decision, each agent receives a
private binary signal that is informative about the current state and observes the past
actions of her predecessors. As the underlying state evolves, the optimal action fluctuates
as well. The question we ask is: how frequently do actions change, and more specifically,
do they change more or less often than the underlying state and the private signals that
agents receive?

We focus on a setting in which the underlying state is relatively stable, so that the
information inferred from past actions remains relevant and accumulates over time.2 This
allows information cascades to arise, in which social information overwhelms agents’ pri-
vate signals and leads them to mimic their predecessors even when their own signals
suggest otherwise. However, as shown in Moscarini et al. (1998), these cascades can only
be temporary: as the state evolves, the social information sustaining a cascade depreci-
ates over time and becomes progressively less relevant to the current agent. Eventually,
once this social information becomes sufficiently weak, the cascade breaks and agents
resume responding to their private signals. This is in contrast to a static environment,
where information cascades, once formed, can persist indefinitely.

Given the presence of information cascades, one might expect actions to fluctuate less
frequently than the underlying state, since agents ignore their private signals during
cascades and may therefore fail to adjust their actions when the state changes.3 However,
because cascades are temporary and signals are not perfectly informative about the state,
agents may also switch actions unnecessarily. Therefore, the question of whether actions
change more or less often than the state is a priori unclear.

1This is also known as a simple two-state Markov process. There are only a handful of papers studying
social learning with a changing state; see, for example, Moscarini, Ottaviani, and Smith (1998); Hirshleifer
and Welch (2002) and Lévy, Pęski, and Vieille (2024). Our model is most similar to that in Moscarini,
Ottaviani, and Smith (1998), except for the tie-breaking rule. See a more detailed discussion in the
literature review section.
2If, instead, the state were to evolve rapidly, past actions would quickly become outdated and convey
little information. In that case, agents would rely on the most recent information, namely, their private
signal. Action fluctuations would then be driven by signal noise, which is more volatile than the state
itself.
3The symmetry of the binary state further amplifies this effect. For example, suppose the state changes
an even number of times, say twice. An agent in a cascade may then incorrectly infer that the state is
unchanged and thus have no reason to change her action.

2



Our main result (Theorem 1) answers this question by establishing a strict ordering
between the volatility of actions, the underlying state, and private signals. We show that,
despite the presence of temporary information cascades, actions fluctuate strictly more
frequently than the underlying state but less frequently than private signals in the long
run. In other words, while information cascades reduce excessive responsiveness to noisy
signals, they do not eliminate excess action fluctuation relative to the state. It is worth
emphasizing that, in this model, agents are fully rational, and these excessive action
switches arise from their incentives to match the evolving state given their information,
rather than from payoff externalities or heuristic behavior.

For example, consider a regime in which the state changes once every 100 periods on
average and each private signal matches the current state with probability 0.8. In this
case, signals change approximately once every three periods. We show that the expected
time between action changes is strictly greater than three, but it is strictly less than
sixty-one periods (see the upper bound in Proposition 2), which is much shorter than the
average duration between state changes. As a result, the long-term frequency of action
changes is lower than that of signal changes but still exceeds that of state changes, leading
to faddish behavior in the long run.

The idea behind the proof of Theorem 1 is as follows. Intuitively, when agents are in
a cascade, they simply mimic the actions of their predecessors, which dampens action
volatility relative to that of the signal. However, this effect is limited by the bounded
duration of cascades. Once a cascade ends, agents again respond to their private informa-
tion and are therefore susceptible to noisy or conflicting signals. These periodic episodes
of renewed responsiveness then generate excess action fluctuation relative to the state.
Formally, to compare action volatility to that of the state and signals, we establish upper
bounds on the expected times between cascade entries and action switches. The bound
on cascade entries implies that cascades occur with positive frequency in the long run,
thereby reducing action volatility relative to signals. Meanwhile, the bound on action
switches is strictly lower than the expected time between state changes, implying that
action switches occur more frequently than state changes on average. Taken together,
these results imply that, in the long run, action volatility is lower than that of signals
but higher than that of the state.

Related Literature. Despite an extensive literature on social learning,4 only a small
strand of papers considers environments with a changing state. Nevertheless, in the
pioneering work of Bikhchandani et al. (1992), the idea of a changing state is briefly
mentioned in their discussion of the fragility of information cascades. Through a numer-
ical example, they show how a one-time shock to the state could break a cascade, even
if such a shock is never realized, and that the probability of an action change is at least

4See Bikhchandani et al. (2024) for a comprehensive survey of recent developments in the social learning
literature.
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87% higher than the probability of a state change (see their Result 4), which aligns with
our main result. They describe this phenomenon as “seemingly whimsical swings in mass
behavior without obvious external stimulus” and refer to it as fads.

While Bikhchandani et al. (1992) presents an early notion of fads, they mainly focus
on learning in a fixed environment where fads cannot recur indefinitely. In contrast,
the recurrence of fads is possible in a changing environment. Indeed, as shown later in
Moscarini, Ottaviani, and Smith (1998), if the underlying state evolves in every period
but remains relatively stable, information cascades must arise, though they can only be
temporary, i.e., it must end in finite time. Our work builds on their model and asks the
following natural question: how does the long-run volatility of actions compare to that
of signals and the underlying state?

In a setting where a single agent repeatedly receives private signals, Hirshleifer and
Welch (2002) examine the effect of memory loss—a situation in which the agent only
recalls past actions but not past signals—on the continuity of the agent’s behavior. They
analyze the equilibrium behavior of a five-period stylized model and show that in a
relatively stable environment, memory loss induces excessive action inertia compared to
a full-recall regime. In contrast, in a more volatile environment, memory loss results
in excessive action impulsiveness.5 Different from their work—which examines how an
agent’s ability to recall past actions and signals affects action fluctuations in the short-
term—our study investigates the long-term fluctuations in the actions of agents who
observe past actions in a changing environment.

Among a few more recent studies that consider a dynamic state, the efficiency of
learning has been a primary focus of study. For example, Frongillo, Schoenebeck, and
Tamuz (2011) consider a specific environment in which the underlying state follows a
random walk with non-Bayesian agents who use different linear rules when updating.
Their main result is that the equilibrium updating weights may be Pareto suboptimal,
causing inefficiency in learning.6 In a similar but more general environment, Dasaratha,
Golub, and Hak (2023) show that having sufficiently diverse network neighbors with
different signal distributions improves learning efficiency, as such diversity allows agents
to extract the most relevant information from old and confounded data.

In a setup similar to ours, a recent study by Lévy, Pęski, and Vieille (2024) considers
the welfare implication of a dynamic state. In their model, agents observe a random
subsample drawn from all past actions and then decide whether to acquire private signals

5Intuitively, as volatility of the environment increases, past actions become less relevant to the current
state. At some point, this information weakens enough so that the amnesiac agent would always follow
her latest signal, but the full-recall agent may not do so at this point. Hence, there is an increase in the
probability of an action change due to amnesia.
6See more studies in the computer science literature, e.g., Acemoglu, Nedic, and Ozdaglar (2008);
Shahrampour, Rakhlin, and Jadbabaie (2013) that consider a dynamic environment with non-Bayesian
agents.
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Figure 1. An illustration of processes (θt) and (at).

that are potentially costly. These model generalizations allow them to highlight the trade-
off between learning efficiency and responsiveness to environmental changes in maximizing
equilibrium welfare. In contrast, we assume that agents observe the full history of past
actions and there is no cost associated with obtaining their private signals. We focus on
this canonical sequential learning model without further complications as our objective
is to compare the long-term relative frequency of action, signal, and state changes—a
question that turns out to be nontrivial even in this simple setting.

2. Model

We follow the setup from Moscarini, Ottaviani, and Smith (1998) closely. Time is
discrete, and the horizon is infinite, i.e., t ∈ N+ = {1, 2, . . .}. There is a binary state
θt ∈ {+1,−1} that evolves over time. Specifically, the state evolves according to a Markov
chain with a symmetric transition probability ε ∈ (0, 1):

P[θt+1 ̸= i | θt = i] = ε, for i ∈ {+1,−1}.

For simplicity, we assume that both states are equally likely at the beginning of time.
Note that this uniform distribution is also the stationary distribution of θt.

A sequence of short-lived agents indexed by time t arrive in order, each acting once
by choosing an action at ∈ {+1,−1}. For each agent t, she obtains a payoff of one if
her action matches the current state, i.e., at = θt and zero otherwise. Before choosing an
action, she receives a binary private signal st ∈ {+1,−1} and observes the history of all
past actions made by her predecessors, ht−1 = (a1, . . . , at−1). Conditional on the entire
sequence of states, the private signals (st) are independent, and each st follows a Bernoulli
distribution Bθt(α) where α ∈ (1/2, 1) is the probability of matching the current state:

P[st = i | θt = i] = α, for i ∈ {+1,−1}.

At any time t, the sequence of events is as follows. First, the agent arrives and observes
the history of all past actions, ht−1. Second, the state θt−1 transitions to θt with a
probability ε of switching. After the state transitions, agent t then receives a private
signal st that matches the current state θt with probability α. Finally, she chooses an
action at that maximizes the probability of matching θt, conditional on the information
available to her, (ht−1, st). A graphical illustration of the sequence of events is shown in
Figure 1.
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Throughout, we assume that the state is relatively stable: for any signal precision
α ∈ (1/2, 1), the probability of a state change is ε ∈ (0, α(1− α)). Equivalently, one can
think of this assumption as follows: in every period, with probability 2ε ∈ (0, 2α(1−α)),
the state is redrawn from the set {+1,−1} with equal probability. Thus, the probability
of a state change is equal to ε ∈ (0, α(1− α)). As shown in Moscarini et al. (1998), this
assumption ensures information cascades can arise but only temporarily.

Agents’ Behavior. Let pt := P[θt = +1 | ht−1, st] denote the posterior belief of agent
t that the state is positive after observing the pair consisting of the action history and
private signal (ht−1, st). The log-likelihood ratio (LLR) of agent t’s posterior belief that
the state is +1 relative to the state being −1 is

Lt = log
pt

1− pt
= log

P[θt = +1 | ht−1, st]

P[θt = −1 | ht−1, st]
.

We call Lt the posterior LLR at time t. By Bayes’ rule, it can be written as the sum of
two terms:

Lt = log
P[θt = +1 | ht−1]

P[θt = −1 | ht−1]
+ log

P[st | θt = +1, ht−1]

P[st | θt = −1, ht−1]
.

We refer to the first term as the public LLR at time t and denote it by ℓt. This is the log-
likelihood ratio of agent t’s public belief, which is derived from the history of past actions
ht−1 and is given by qt := P[θt = +1 | ht−1]. Since the private signal is conditionally
independent of past actions given the current state, the second term in the above sum
simplifies to the LLR induced by the signal alone. We define this value as cα := log α

1−α
.

Thus, the second term equals cα if st = +1 and −cα if st = −1. Consequently, depending
on the realization of the private signal, the posterior LLR evolves as follows:

Lt = ℓt + cα · st (2.1)

The optimal action for agent t is the action that maximizes her expected payoff condi-
tional on the information available to her:

at ∈ argmax
a∈{−1,+1}

P[θt = a | ht−1, st].

It thus follows from (2.1) that at = +1 if Lt > 0 and at = −1 if Lt < 0. When Lt = 0,
agent t is indifferent between both actions. We assume that in this case she follows the
action taken by her immediate predecessor, i.e., at = at−1.7 This tie-breaking rule differs
from that used in Moscarini, Ottaviani, and Smith (1998), where indifferent agents are
assumed to follow their own private signals. We make this assumption so that any action
changes are driven by agents’ strict preference for one action over another, rather than
by the specific choice of the tie-breaking rule.

7Our results do not depend on this assumption and are robust to any tie-breaking rule that is common
knowledge.

6



Cascade and Learning Regions. As mentioned before, an information cascade occurs
when the social information inferred from past actions outweighs an agent’s private signal,
causing the agent to disregard her private information. From (2.1), one can see that this
occurs precisely when |ℓt| > cα. In this case, the sign of Lt—and therefore the optimal
action for agent t—is determined solely by the sign of ℓt, regardless of the realization of
st. Thus, when ℓt > cα, agent t always chooses at = +1, and when ℓt < −cα, she always
chooses at = −1.

Similarly, when |ℓt| = cα, the tie-breaking rule at indifference implies that agent t

chooses the same action as agent t− 1, regardless of the realization of st. Moreover, one
can verify that in this case at−1 equals the sign of ℓt.8 We therefore refer to the region
where |ℓt| ≥ cα as the cascade region, in which actions are fully determined by social
information. Conversely, when |ℓt| < cα, the private signal can overturn the public belief,
and thus agent t follows her private signal, i.e., at = st. We refer to this region as the
learning region.

3. State and Signal Volatility

To study the long-run volatility of actions, it is useful to first examine the volatility of
the underlying state and signals. Since θt follows a simple two-state Markov chain with a
symmetric transition probability ε, the expected time between state changes is inversely
proportional to the likelihood of a state change. To illustrate this, let x represent the
expected time between state changes. Then x satisfies the following equation:

x = ε+ (1− ε)(1 + x),

which implies that x = 1/ε. That is, a higher likelihood of a state change corresponds
to a shorter average time between changes. We denote the fraction of periods t ≤ n in
which the state changes by

Qθ(n) =
1

n

n∑
t=1

1(θt ̸= θt+1).

By the strong law of large numbers,

lim
n→∞

Qθ(n) = ε almost surely.

Equivalently, an average state duration—defined as the number of consecutive periods
during which the state remains unchanged—of 1/ε implies that the state changes in a
fraction ε of periods in the long run. Similarly, we denote the fraction of periods t ≤ n

8To see this, suppose without loss of generality that ℓt = cα, so sign(ℓt) = +1. If st = +1, then
Lt = ℓt + cα > cα, which leads to at = +1. If instead st = −1, then Lt = ℓt − cα = 0 and by the
tie-breaking rule, at = at−1. In either case, at−1 = +1 because ℓt = cα implies that either ℓt−1 > cα, in
which case agent t− 1 is in the cascade region and chooses +1, or ℓt−1 < cα but at−1 must be +1 since
ℓt = cα.

7



in which the signal changes by

Qs(n) =
1

n

n∑
t=1

1(st ̸= st+1).

Since each signal matches the current state with probability α, it also follows from the
strong law of large numbers that

lim
n→∞

Qs(n) = P[st ̸= st+1] almost surely,

and a direct calculation yields

P[st ̸= st+1] = ε+ 2(1− 2ε)α(1− α). (3.1)

As is evident from (3.1), this probability is strictly greater than ε, and so signals switch
more often than the state in the long run. This is simply because signals are not perfectly
informative and thus exhibit additional volatility beyond that of the underlying state.
As signals become more precise (α → 1), this excess volatility vanishes; in the limit of
perfectly informative signals, signal changes occur as often as state changes.

4. Results

We now turn to the volatility of agents’ actions. Recall that each agent receives a
private signal about the current state and observes the history of past actions. Analogous
to the volatility measures defined in Section 3, we denote the fraction of periods t ≤ n in
which the action changes by

Qa(n) =
1

n

n∑
t=1

1(at ̸= at+1).

Since the state is relatively stable, agents periodically enter temporary information cas-
cades, during which they stop responding to their private signals and instead mimic the
actions of their predecessors. As a result, one would expect actions to be less volatile
than signals. A natural question, then, is whether this cascade-induced inertia is strong
enough to align the volatility of actions with that of the underlying state. Our main result
answers this question by establishing a strict ordering among the long-run frequencies of
signal, action, and state switches.

Theorem 1. In the long run, actions are less volatile than signals but more volatile than
the state:

lim
n→∞

Qs(n) > lim
n→∞

Qa(n) > lim
n→∞

Qθ(n) almost surely.

Thus, Theorem 1 shows that while information cascades reduce action volatility relative
to that of signals, agents nevertheless switch actions more frequently than the underlying
state. As an example, consider a regime in which the state changes with probability 1%

per period and private signals match the current state with probability 80%. In this case,
the state changes once every 100 periods on average, whereas signals change roughly once
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every three periods.9 Meanwhile, the long-run average duration between action changes
lies strictly between these two cases: it is strictly greater than three periods and bounded
above by 61 periods.10 Taken together, this implies that, in the long run, action switches
occur less frequently than signal switches but more frequently than state switches.

The next result, which can be obtained as a corollary of Theorem 1, further quantifies
the extent to which actions are more volatile than the underlying state by providing a
lower bound on their relative frequencies.

Corollary 1. The long-run frequency of action switches is at least 1/(log 2 + ε) times
that of state switches:

lim
n→∞

Qa(n) ≥
1

log 2 + ε
lim
n→∞

Qθ(n) almost surely.

In particular, as the state becomes more stable, this corollary implies that the long-run
frequency of action switches is at least about 44 percent higher than the frequency of
state changes.

The idea behind the proof of Theorem 1 is as follows. Intuitively, when agents are in
a cascade, they simply mimic the actions of their predecessors, which dampens action
volatility relative to that of signals. As the state evolves, however, the social information
sustaining a cascade becomes less relevant to the current agent. Consequently, cascades
are guaranteed to break after some finite period, and agents resume responding to their
private signals. These episodes of renewed responsiveness then generate excessive action
fluctuations, as agents at such times are particularly susceptible to opposing information.

Before formalizing this idea, note that because action changes are not independent
events, we cannot directly relate the expected time between changes to the corresponding
long-run frequency using the standard law of large numbers. Nevertheless, an agent’s
action is a function of her public belief, which itself is a Markov process.11 We will utilize
this Markov property to study how the public belief transitions across different regions
and use these transitions to derive bounds on the expected time between action switches.

Formally, the proof of Theorem 1 proceeds in three steps. First, we show that the time
between consecutive entries of the public belief process into the cascade region is uniformly
bounded (Proposition 1). This implies that cascade entries—during which signals may
change while actions do not—occur with positive frequency in the long run, thereby
reducing action switches relative to signal switches. Second, we show that once the agent’s
public belief exits the cascade region, her action either changes or the public belief re-
enters the same cascade region. By upper bounding the probability of the latter event,

9To see this, substituting α = 0.8 and ε = 0.01 into (3.1) yields a probability of approximately 0.324.
10The upper bound follows from Proposition 2 by substituting α = 0.8 and ε = 0.01 into M(α, ε),
yielding M(0.8, 0.01) ≈ 61.
11Since the state changes over time, the agent’s public belief ceases to be a martingale, which is an
important tool in analyzing long-term learning outcomes in fixed-state models (Smith and Sørensen,
2000).
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we obtain an upper bound on the expected time between action switches (Proposition
2). Third, we compare this bound to the expected time between state changes and show
that the former is strictly less than the latter. Theorem 1 then combines these bounds
to compare the long-run frequencies of action, signal, and state switches, concluding that
actions are less volatile than signals but more volatile than the state.

5. Analysis

In this section, we analyze how the agent’s public belief evolves in both the learning
and cascade regions. These dynamics allow us to establish bounds on the expected time
between action changes, which will be useful in proving our main result. We provide a
proof sketch of Theorem 1 at the end of the section.

Belief Dynamics.

Cascade Region. It is well-known that in this model, if the state is fixed (ε = 0), an
information cascade will be triggered and, once triggered, will last indefinitely. This is
because once the agent’s public belief enters the cascade region, it remains there, as all
subsequent agents face the same problem as the initial agent who started the cascade.
Since signals are binary and imperfectly informative, the resulting cascade is formed based
on limited information and thus can be incorrect with positive probability.12

However, if the state is changing (ε > 0), the behavior of the agent’s public belief
becomes more complex. To see this, consider the case where the public LLR at time t

satisfies ℓt ≥ |cα|, and suppose t is the time at which the public LLR first enters the
cascade region from the learning region. In this case, agent t follows the action of her
immediate predecessor, so at contains no additional information about θt beyond what
at−1 provides. Meanwhile, between time t and t+1, the state may change with probability
ε. Since θt follows a Markov chain, conditional on θt, the history ht provides no further
information about θt+1. Thus, while ℓt remains in the cascade region, the corresponding
public belief updates deterministically as follows:

qt+1 = P[θt+1 = +1 | ht] = (1− ε)qt + ε(1− qt) = (1− 2ε)qt + (2ε)
1

2
. (5.1)

From (5.1), we observe that qt+1 tends toward 1/2, and so the public belief eventually exits
the cascade region. As mentioned before, having a changing state depreciates the value
of older social information, as actions observed in earlier periods become less relevant
to the current agent. Consequently, after a finite number of periods, the agent’s public
belief gradually converges to 1/2, so that a cascade supported by this belief eventually
ceases.

12More generally, in a fixed state model with non-binary signals, whether agents eventually all choose
the correct action depends on whether the private signals are unbounded or bounded. Our case with
binary signals and α ∈ (1/2, 1) is a special case of bounded signals.
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Learning Region. Next, we consider the learning region where |ℓt| < cα. If the state is
fixed (ε = 0), then the agent at time t simply follows their private signal: at = st. As a
result, at time t+ 1, the agent’s public belief coincides with their posterior belief:

qt+1 = P[θ = +1 | ht−1, at] = P[θ = +1 | ht−1, st] = pt.

Hence, the corresponding log-likelihood ratios also coincide, i.e., ℓt = Lt, and so ℓt also
evolves according to (2.1).

In contrast, if the state changes with probability ε > 0 in every period, upon observing
the latest history, each agent needs to consider the possibility that the state may have
changed after the most recent action was taken. Note that neither the learning nor the
cascade region is affected by a changing state as the state only transitions after the history
of past actions is observed. By Bayes’ rule, the public LLR at time t+ 1 satisfies

ℓt+1 = log
P[θt+1 = +1 | ht−1, at]

P[θt+1 = −1 | ht−1, at]

= log

∑
i∈{−1,+1} P[θt+1 = +1, at | ht−1, θt = i] · P[θt = i | ht−1]∑
i∈{−1,+1} P[θt+1 = −1, at | ht−1, θt = i] · P[θt = i | ht−1]

. (5.2)

Since θt follows a Markov chain and, in the learning region, the agent’s action coincides
with her signal (at = st), it follows that conditional on θt, both θt+1 and at are independent
of the history ht−1 and of each other. Therefore, if st = +1, the public LLR evolves
according to

ℓt+1 = log
(1− ε)αeℓt + ε(1− α)

εαeℓt + (1− ε)(1− α)
.

If st = −1, it evolves as

ℓt+1 = log
(1− ε)(1− α)eℓt + εα

ε(1− α)eℓt + (1− ε)α
.

In sum, when ℓt is in the learning region, its evolution in (5.2) can be written as

ℓt+1 = Gε(ℓt + cα · st),

where
Gε(x) := log

(1− ε)ex + ε

1− ε+ εex
. (5.3)

When ℓt is in the cascade region, the update rule in (5.1) similarly reduces, in terms of
the log-likelihood ratio, to

ℓt+1 = Gε(ℓt).

Note that Gε(·) is strictly increasing. Thus, in the learning region, belief updating is
monotone in both the public belief and the realized signal: Gε(ℓ+ cα) > ℓ > Gε(ℓ− cα).
Moreover, as seen in (5.1), because the state is evolving, belief updating is attenuated
toward the uniform belief while preserving its direction: for all x > 0, 0 < Gε(x) < x and
for all x < 0, 0 > Gε(x) > x.
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From above, we see that the magnitude difference between ℓt and ℓt+1 depends on
both the realization of the private signal st and the current value of ℓt. The following
lemma summarizes the transitional patterns of the public LLR when it is in the learning
region.13 At any time t, we say that an action is opposing to the current public belief if
at ̸= sign(ℓt) and supporting otherwise.

Lemma 1. For any ℓt such that |ℓt| < cα, the following two conditions hold.
(i) at ̸= sign(ℓt) implies that sign(ℓt+1) = −sign(ℓt).
(ii) at = at+1 = sign(ℓt) implies that |ℓt+2| > cα.

The first part of this lemma states that when the public belief is in the learning re-
gion, a single opposing action is sufficient to overturn the sign of the public LLR. The
second part indicates that initiating a cascade requires at most two supporting actions.
Intuitively, because the public LLR in the learning region tends to be moderate, it is
sensitive to opposing evidence. At the same time, although the public belief adjusts more
conservatively due to the possibility of a changing state, observing consecutive supporting
evidence is sufficient to trigger a cascade.

Another important observation is that, regardless of whether the state is fixed or chang-
ing, the process (ℓt) forms a Markov chain.14 In the case of a fixed state, the state space
of this Markov chain is finite since the magnitude difference between ℓt and ℓt+1 is a
constant for any given signal precision. However, in the case of a changing state, the
state space becomes infinite, as these magnitude differences also depend on the current
value of ℓt. This poses a significant challenge in finding its stationary distribution, which
is required to calculate the exact expected time between sign switches. We circumvent
this problem by providing bounds to this expected time instead.

Bounds on Expected Durations. To bound the expected time between the sign
switches of the public LLR, consider first the maximum length of any cascade. Such a
maximum exists because the public belief in the cascade region slowly converges toward
uniformity. Moreover, for any given signal precision and probability of a state change, no
cascade can last longer than the one starting at Gε(2cα), as this is the supremum of the
public LLR. Using the evolution of the public LLR in (5.3), one can therefore calculate
a tight upper bound on the length of any cascade, which we denote by

K(α, ε) =
log(1− 2α(1− α))

log(1− 2ε)
.

For completeness, we provide in the appendix (see Lemma 2) a derivation of K(α, ε)

analogous to the calculation in Section 3.B of Moscarini, Ottaviani, and Smith (1998).
Notice that K(α, ε) decreases in both α and ε. As private signals become less precise,

13This lemma is in spirit close to the overturning principle (Smith and Sørensen, 2000), but it applies
to a changing state.
14This is because conditional on the state θt, the private signal st is independent of ℓτ , for any τ < t.
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cascades contain more information relative to private signals, potentially extending the
duration of a cascade. Meanwhile, as the state becomes less volatile, temporary cascades
last longer because social information depreciates at a lower rate. Taken together, this
suggests that prolonged cascades may result from either less precise private signals or a
more stable environment.

Building on the cascade-length bound, we now establish two critical upper bounds.
The first concerns the expected time between consecutive entries into the cascade region.
Because actions remain constant within the cascade region while private signals con-
tinue to fluctuate, bounding this inter-entry time is essential for comparing the long-run
frequency of action switches with that of signal switches. The second bound concerns
the expected time between sign switches of the public LLR. Since there is a one-to-
one mapping between agents’ actions and the sign of the public LLR—more specifically,
at = sign(ℓt+1)—this bound is a key ingredient in comparing the frequency of action
switches with that of state switches.

Formally, for each integer i = 1, 2, . . ., let Ti and Ci denote the (random) times at
which the public LLR switches sign and enters the cascade region from the learning
region, respectively, for the i-th time. We adopt the conventions T0 = 0 and C0 = 0.
Define Di := Ti − Ti−1 as the duration between the (i − 1)-th and i-th sign switches.
Similarly, define the inter-entry times by Ji = Ci − Ci−1.

The next proposition shows that the expected time between successive entries of the
public LLR process into the cascade region is uniformly bounded.

Proposition 1. For any integer i ≥ 2, conditional on the public LLR entering the cascade
region from the learning region for the (i − 1)-th time, the expected time until the next
entry into the cascade region satisfies

E[Ji | ℓCi−1
] ≤ ⌊K(α, ε)⌋+ 8.

The proof of Proposition 1 relies on the observation that the public belief process
alternates between the cascade and learning regions. Accordingly, the bound consists of
two components: the maximum duration spent inside a cascade and the expected time
spent in the learning region. Since two supporting signals suffice to trigger a cascade
(Lemma 1), the latter is uniformly bounded above.

Next, we derive an upper bound on the expected time between sign switches of the
public belief, providing an upper bound on the expected time between action switches.

Proposition 2. For any integer i ≥ 2, conditional on the public LLR switching its sign
for the (i− 1)-th time, the expected time until the next sign switch satisfies

E[Di | ℓTi−1
] < M(α, ε), where M(α, ε) = 1 +

K(α, ε)

2α(1− α)
.

This result implies that, on average, the public LLR is expected to change its sign at
least once every M(α, ε) periods. For example, when α = 0.8 and ε = 0.01, M(0.8, 0.01)
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is approximately 61, indicating that the public LLR experiences at least one sign switch
every 61 periods. Moreover, notice that M(α, ε) is strictly decreasing in α (see Claim
1 in the appendix). As a result, M(1/2, ε) provides the maximal upper bound for any
ε ∈ (0, α(1− α)).

The proof idea behind Proposition 2 is as follows. Since K(α, ε) decreases in α, the
greatest upper bound on the length of any cascade is obtained as α → 1/2, in which case
K(1/2, ε) = − log 2/ log(1 − 2ε). For such weakly informative signals, once a cascade
ends and the process returns to the learning region, agents follow their private signals,
which can be either positive or negative with nearly equal probability. As a result, upon
exiting a cascade, the probability that the public LLR switches its sign also approaches
1/2. Since each cascade entry can last at most K(1/2, ε) periods, the time between sign
switches of the public LLR is stochastically dominated by the product of K(1/2, ε) and
the number of cascade entries before a sign switch occurs. The latter is geometrically
distributed with success probability approximately 1/2. Therefore, the expected time
until the next sign switch of the public LLR is bounded above by

1 +
∞∑
i=1

i

2i
K(1/2, ε) = 1 +

2 log 2

− log(1− 2ε)
= M(1/2, ε). (5.4)

Proof Sketch of Theorem 1. We end this section by providing a proof sketch of
Theorem 1. First, to see that action volatility is strictly lower than signal volatility,
observe that upon each entry into a cascade, there is a uniformly positive probability that
signals switch while actions remain constant. Since the expected time between successive
entries is uniformly bounded above (Proposition 1), it follows that signals fluctuate more
frequently than actions in the long run. Second, to see why action volatility is strictly
higher than state volatility, consider a weakly informative signal where α is close to 1/2.
By Proposition 2, M(1/2, ε) is the largest upper bound on the expected time between
sign switches of the public LLR. Using a standard approximation for (5.4), for ε small
enough, M(1/2, ε) can be approximated by (log 2)/ε, which is strictly less than 1/ε, the
expected time between state changes.15 Hence, on average, it takes less time for the
action to switch than for the state, implying that in the long run, actions switch more
often than the state.

6. Numerical Simulations

While Theorem 1 establishes a strict ordering of long-run action volatility relative to
signals and the state, it leaves open the question of magnitude: how large are the gaps
between these frequencies of change? Moreover, to what extent is the excess volatility
of actions driven by the informational coarseness of observing past actions rather than

15In fact, in Claim 2 in the appendix, we show that this strict inequality M(1/2, ε) < 1/ε holds for all
ε ∈ (0, 1/4). Since M(α, ε) is strictly decreasing in α, it follows that M(α, ε) < 1/ε for all ε ∈ (0, α(1−α)).
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(c) Public Signal versus Public Action
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Figure 2. On the top left: the ratios between action (signal) switches
and state switches as functions of signal precision, with state volatility
fixed at 5%. The top right figure plots the same ratios as functions of
state volatility, with signal precision fixed at 0.51. On the bottom: the
ratio of action switch frequencies when past signals are public to those
when only past actions are public as a function of signal precision α for
ε ∈ {0.05, 0.15}. All dashed horizontal lines correspond to a ratio of one.

past signals? To shed light on these questions, we use numerical simulations to quantify
action volatility under different parameter values and information regimes.

We simulate the frequencies of signal, action, and state changes over one million periods
for different values of signal precision (α) and state volatility (ε) under the assumption
that the state is relatively stable. In addition to our main setting, in which agents observe
past actions, we also consider an alternative regime in which all past signals are publicly
observable. We refer to the former as the public-action setting and the latter as the public-
signal setting. We then compute (i) the ratio of action switches to state changes, (ii) the
ratio of signal switches to state changes, and (iii) the ratio of action-switch frequencies
across the two regimes.
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The results are depicted in Figure 2. On the top left, we fix state volatility at 0.05

and plot the ratios of action switches (when past actions are observable) to state switches
and of signal switches to state switches while varying signal precision. As signal preci-
sion increases, both action and signal switches become less frequent relative to the state.
However, the reduction is much more pronounced for signal switches than for action
switches: as α increases, the two ratios converge; nevertheless, even at high signal preci-
sion (α = 0.9), actions still switch at about twice the rate of state changes, exceeding the
lower bound suggested in Corollary 1. On the top right, we fix signal precision at 0.51
and vary state volatility. As state volatility increases, both signals and actions switch
more frequently. However, as shown in the figure, the action-to-state and signal-to-state
ratios decline, indicating that state changes accelerate faster than either action or signal
changes.

On the bottom of Figure 2, we plot the ratio of action-switch frequencies in the public-
signal setting to those in the public-action setting, as a function of signal precision for
different levels of state volatility. Thus, a ratio above one indicates that action volatility
is higher in the public-signal setting; a ratio below one indicates the opposite. A priori,
it is unclear which regime induces greater action volatility. On the one hand, because
past actions are noisy, binary summaries of agents’ private signals—which are themselves
noisy observations of the state—replacing actions with signals could reduce unnecessary
action switches. On the other hand, when all past signals are publicly observable, agents
never become stuck in cascades, so their beliefs remain responsive to each new signal,
which may in turn lead to more frequent action switching.

Indeed, as shown in the figure, replacing actions with signals sometimes reduces long-
run action volatility and sometimes exacerbates it. For example, when the state is very
stable (ε = 0.05) and signals are very imprecise (α = 0.51), action volatility is higher
in the public-signal setting than in the public-action setting. Intuitively, when the state
is sufficiently stable, past information depreciates slowly, so cascades last longer, which
dampens action changes in the public-action setting. Meanwhile, in this stable environ-
ment, if past signals were publicly observable, then agents would never stop incorporating
new signals, and such persistent responsiveness would generate more action switches un-
der very noisy signals. In contrast, we see that when the state is moderately volatile
(ε = 0.15), the informational advantage of observing precise past signals outweighs the
stabilizing effect of temporary cascades. In this case, action volatility is lower in the
public-signal setting than in the public-action setting across all levels of signal preci-
sion.16 These simulations suggest that the region of the parameter space in which action
volatility is higher in the public-signal setting is relatively small.

16The assumption of a relatively stable state, ε ∈ (0, α(1 − α)), implies that for any fixed ε, signal
precision is bounded above by ᾱ(ε) = (1+

√
1− 4ε)/2. Hence, if ε = 0.15, the maximum signal precision

is approximately 0.82.
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7. Conclusion

We study the long-term behavior of agents who receive a private signal and observe
the past actions of their predecessors in a changing environment. As the state evolves,
the best action to take also fluctuates. We show that, in the long run, actions switch
less frequently than signals but more frequently than the state itself. This result holds
despite the presence of temporary information cascades in which agents simply mimic
their predecessors’ actions.

One may wonder if the main result is driven by the high frequency of action changes
when the posterior belief is around 1/2. Accordingly, we can further restrict the measure-
ment of action volatility to exclude consecutive action changes, i.e., cases where at ̸= at−1

and at−1 ̸= at−2. Simulation results show that even under this more restrictive counting,
actions still change more frequently than the state. For example, with α = 0.75, ε = 0.05,
and a total of 100, 000 periods, action changes occur approximately 8,150 times, compared
to the number of state changes, which is about 5,100 times.

There are several possible avenues for future research. As seen in Section 6, action
volatility need not be uniformly higher or lower in the public-signal setting than in the
public-action setting; rather, the ranking depends on the underlying parameters. It would
therefore be interesting to characterize the regions in which each information structure
generates higher action volatility. It is also natural to study the corresponding long-run
mistake probability under these information regimes. We leave these questions for future
work, as they currently seem to be beyond what is technically tractable.

Another open question concerns the tightness of the bound in Proposition 2. In par-
ticular, one could ask whether this upper bound M(α, ε) is tight, and if so, whether for
any finite time N , the number of action changes is well approximated by N/M(α, ε).
Our simulation results suggest that this is not the case. For example, when α = 0.9 and
ε = 0.05, and N = 100, 000, we have M(0.9, 0.05) ≈ 11.5, which would predict at least
about 8,700 action changes. In contrast, our simulations exhibit approximately 14,200
action changes—almost twice as many as implied by the bound. Furthermore, the simu-
lations suggest that as the private signal becomes less informative and the state evolves
more slowly, i.e., when α approaches 1/2 and ε approaches 0 at the same rate, the ratio
between the frequency of action changes and state changes approaches a constant that is
close to 4. This suggests that achieving a very accurate understanding of action volatility
in this regime might be possible.
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Appendix A. Omitted Proofs from the main text

Proof of Lemma 1. Consider the case where ℓt ∈ (0, cα). For part (i), if at = −1 ̸=
sign(ℓt), then given that ℓt is in the learning region, we have st = at = −1. Since Gε in
(5.3) is strictly increasing, and Gε(0) = 0, we have that ℓt+1 = Gε(ℓt − cα) < 0 for all
ℓt ∈ (0, cα). Thus, sign(ℓt+1) = −1 = −sign(ℓt).

For part (ii), it suffices to show that Gε(Gε(0 + cα) + cα) ≥ cα since Gε is strictly
increasing. Let cu be the unique solution to Gε(cu + cα) = cα, and so it is the threshold
at which exactly one positive signal is required for the public LLR to enter the cascade
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region on the positive action. A direct calculation yields that

cu = log
(1− α)(α− ε)

α(1− α− ε)
∈ (0, cα).

Note that Gε(cα) > cu for all ε ∈ (0, α(1 − α)), and since Gε is strictly increasing,
Gε(Gε(cα) + cα) > Gε(cu + cα) = cα. Hence, we conclude that

Gε(Gε(cα) + cα) > cα,

as required. The case where ℓt ∈ (−cα, 0) follows an analogous argument. □

Lemma 2. The maximum length of any temporary information cascade is given by

K(α, ε) =
log(1− 2α(1− α))

log(1− 2ε)
.

Proof. Since Gε(2cα) is the supremum of the public LLR, the corresponding supremum
of the public belief, m, is given by

m =
(1− ε)α2 + ε(1− α)2

α2 + (1− α)2
.

Within the cascade region, the public belief evolves deterministically according to (5.1).
Starting from an initial value x, iterating this update rule h times yields

g(h, x) := ε
h−1∑
i=0

(1− 2ε)i + (1− 2ε)hx.

Consequently, after spending h periods in the cascade region, any public belief must be
strictly less than g(h,m), where summing the geometric series yields

g(h,m) = ε

[
1− (1− 2ε)h

2ε

]
+ (1− 2ε)hm

=
1

2
+ (1− 2ε)h

(
m− 1

2

)
.

The cascade terminates when the belief drops to α. Thus, we examine the condition
g(h,m) ≤ α, which is equivalent to

(1− 2ε)h
(
m− 1

2

)
≤ α− 1

2
. (A.1)

Substituting the expression for m, we obtain

m− 1

2
=

(1− ε)α2 + ε(1− α)2

α2 + (1− α)2
− 1

2
=

(1− 2ε)(2α− 1)

2(α2 + (1− α)2)
.

Plugging this back into (A.1) yields

(1− 2ε)h · (1− 2ε)(2α− 1)

2(α2 + (1− α)2)
≤ 2α− 1

2
.
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Since α > 1/2, we can divide both sides by 2α−1
2

. Noting that the denominator α2 +(1−
α)2 = 1− 2α(1− α), the inequality simplifies to

(1− 2ε)h+1 ≤ 1− 2α(1− α).

Solving for h yields the maximum duration of a temporary information cascade:

K(α, ε) =
log(1− 2α(1− α))

log(1− 2ε)
.

□

Claim 1. The upper bound M(α, ε) = 1 + K(α,ε)
2α(1−α)

is strictly decreasing in α.

Proof. Let x(α) = 2α(1−α). For α ∈ (1/2, 1), x(α) takes values in (0, 1/2) and is strictly
decreasing. Using this change of variable, we write

M(x, ε) = 1 +
1

log(1− 2ε)
· f(x),

where f(x) = log(1−x)
x

. Note that 1
log(1−2ε)

< 0 for ε ∈ (0, 1/2). Differentiating f(x) with
respect to x yields

f ′(x) =
1

x2

[
− x

1− x
− log(1− x)

]
.

Let g(x) = − x
1−x

− log(1− x). Since g(0) = 0 and g′(x) = −x
(1−x)2

< 0 for x > 0, it follows
that g(x) < 0 for all x ∈ (0, 1/2). Consequently, f ′(x) < 0, meaning that f(x) is strictly
decreasing in x. Finally, applying the chain rule, we have

dM

dα
=

1

log(1− 2ε)
· f ′(x) · x′(α).

Since 1
log(1−2ε)

< 0, f ′(x) < 0, and x′(α) < 0, the product is negative. Thus, M(α, ε) is
strictly decreasing in α. □

We introduce the following notation, which will be useful in the proofs of Proposition
1 and 2. Let π(ℓ) denote the probability of receiving a positive signal conditional on the
public LLR being ℓ.17 By the law of total probability,

π(ℓ) = α · eℓ

1 + eℓ
+ (1− α) · 1

1 + eℓ
=

1 + α(eℓ − 1)

1 + eℓ
,

which is strictly increasing in ℓ. Therefore,

π̄ := sup
ℓ∈(0,cα)

π(ℓ) = 1− 2α(1− α). (A.2)

Note that π(0) = 1/2. Consequently, for any ℓ ̸= 0, the probability of receiving a
supporting signal (i.e., π(ℓ) if ℓ > 0 and 1− π(ℓ) if ℓ < 0) is strictly greater than 1/2.

17For ease of notation, we suppress its dependence on α.
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Proof of Proposition 1. We decompose Ji into the time spent in the cascade region and
the subsequent time spent in the learning region. By Lemma 2, the former is determin-
istically bounded by ⌊K(α, ε)⌋.

For the latter, part (ii) of Lemma 1 implies that two consecutive supporting actions
suffice to re-enter the cascade region. Moreover, in the learning region at = st, and the
probability of a supporting signal is at least 1/2. Therefore, conditional on any history
upon being in the learning region, the probability of getting two consecutive supporting
actions over the next two periods is at least (1/2)2 = 1/4. Hence the waiting time from
entering the learning region to the next cascade entry is stochastically dominated by 2G

where G is a geometric random variable with success probability 1/4. Since E[2G] = 8,
we obtain the result. □

Proof of Proposition 2. Fix a positive integer i ≥ 2. Recall that Ti−1 denotes the time at
which the public LLR changes sign for the (i − 1)-th time, and we defined the duration
of the i-th run by Di = Ti − Ti−1. We will consider the case ℓTi−1

> 0 as the case where
ℓTi−1

< 0 follows from an analogous argument. Let cu, as in the proof of Lemma 1, be
the unique solution to Gε(cu + cα) = cα.

There are three disjoint intervals for the value of ℓTi−1
: (i) [cu, cα); (ii) (0, cu), or (iii)

[cα, Gε(2cα)). We will show that in each case

E[Di | ℓTi−1
] < 1 +

K(α, ε)

2α(1− α)
= M(α, ε),

where K(α, ε) is the upper bound on the length of any cascade.
To this end, let κ(ℓ) denote the length of a positive cascade triggered by receiving a

positive signal conditional on the public LLR being ℓ. Let L(ℓ) denote the value of the
public LLR upon first exiting the cascade region. Finally, let K := ⌊K(α, ε)⌋ ≥ 1 denote
the greatest integer less than or equal to K(α, ε).

Case (i). Suppose ℓTi−1
∈ [cu, cα). By part (i) of Lemma 1, since ℓTi−1

is in the learning
region, one opposing signal is sufficient to change the sign of ℓTi−1

. Thus, the expected
time to the next sign switch can be written as

E[Di | ℓTi−1
] = 1− π(ℓTi−1

) + π(ℓTi−1
)
(
κ(ℓTi−1

) + E[Di | L(ℓTi−1
)]
)
.

Using π(ℓ) ≤ π̄ for ℓ ∈ (0, cα) from (A.2) and κ(ℓ) < K, we obtain the bound

E[Di | ℓTi−1
] < 1− π̄ + π̄

(
K + E[Di | L(ℓTi−1

)]
)
. (A.3)

Now, there are two possibilities for L(ℓTi−1
). If L(ℓTi−1

) ∈ [cu, cα), then taking the
supremum on both sides and rearranging yields

sup
cu≤ℓTi−1

<cα

E[Di | ℓTi−1
] ≤ 1 +

π̄K

1− π̄
. (A.4)
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If L(ℓTi−1
) ∈ (0, cu), then one more positive signal pushes the LLR into [cu, cα). Again,

using π(ℓ) ≤ π̄, we get

E[Di | L(ℓTi−1
)] < 1− π̄ + π̄

(
1 + E[Di | Gε(L(ℓTi−1

) + cα)]
)
.

Substituting the above inequality into (A.3) yields

E[Di | ℓTi−1
] < 1− π̄ + π̄

(
K + 1− π̄ + π̄

(
1 + E[Di | Gε(L(ℓTi−1

) + cα)]
))

Since Gε(·) is strictly increasing, by part (ii) of Lemma 1, Gε(L(ℓTi−1
) + cα) ∈ [cu, cα).

Taking the supremum on both sides and rearranging gives

sup
cu≤ℓTi−1

<cα

E[Di | ℓTi−1
] ≤ 1− π̄ + (K + 1)π̄

1− π̄2

which is less than the upper bound in (A.4) since K ≥ 1.
Case (ii). Suppose ℓTi−1

∈ (0, cu). By part (i) of Lemma 1 and the definition of π̄, the
expected time to the next sign switch is bounded above:

E[Di | ℓTi−1
] < (1− π̄) + π̄(1 + E[Di | Gε(ℓTi−1

+ cα)])

< (1− π̄) + π̄(1 + 1 +
π̄

1− π̄
K)

=
π̄2(K − 1) + 1

1− π̄
(A.5)

where the second inequality follows from the fact that Gε(ℓTi−1
+ cα) ∈ [cu, cα) and (A.4).

Case (iii). Suppose ℓTi−1
∈ [cα, Gε(2cα)). In this case, after at most K periods, the

public LLR initiated at ℓTi−1
would have exited the cascade region. Hence, the expected

time to the next sign switch is bounded above:

E[Di | ℓTi−1
] ≤ K + E[Di | L(ℓTi−1

)].

Again, there are two possible cases for L(ℓTi−1
): either L(ℓTi−1

) ∈ [cu, cα) or L(ℓTi−1
) ∈

(0, cu). If it is the former case, it follows from (A.4) that

E[Di | ℓTi−1
] < 1 +

1

1− π̄
K. (A.6)

If it is the latter case, then it follows from (A.5) that

E[Di | ℓTi−1
] < K +

π̄2(K − 1) + 1

1− π̄

= K + 1 + π̄ +
π̄2

1− π̄
K ≤ 1 +

1

1− π̄
K.

Now, note that the maximum of these three upper bounds given in (A.4) to (A.6) is
1 + 1

1−π̄
K. Furthermore, by definition, K ≤ K(α, ε). Therefore, we conclude that

E[Di | ℓTi−1
> 0] < 1 +

K(α, ε)

2α(1− α)
.
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□

Claim 2. For all α ∈ (1/2, 1) and ε ∈ (0, α(1− α)), we have

M(α, ε) < 1/ε.

Proof. Since M(α, ε) is strictly decreasing in α (Claim 1), for any α > 1/2, it is bounded
above by its limit as α → 1/2:

M(α, ε) < M(1/2, ε) = sup
α∈(1/2,1)

M(α, ε) = 1 +
2 log 2

− log(1− 2ε)
.

The condition M(1/2, ε) < 1/ε is equivalent to

2 log 2 < −(
1

ε
− 1) log(1− 2ε).

Since ε < α(1 − α) and α can be arbitrarily close to 1/2, we restrict attention to ε ∈
(0, 1/4). By the L’Hôpital’s rule,

lim
ε→0

−(
1

ε
− 1) log(1− 2ε) = lim

ε→0
2
(1− ε)2

1− 2ε
= 2.

Since 2 > 2 log 2 and −(1
ε
− 1) log(1− 2ε) is strictly increasing in ε, the above inequality

holds for all ε ∈ (0, 1/4). Thus we conclude that for all α ∈ (1/2, 1) and ε ∈ (0, α(1−α)),

M(α, ε) < M(1/2, ε) < 1/ε.

□

The following lemma will be useful in the proof of Theorem 1. It establishes that
the process (Di) has well-defined moments. In particular, it implies that there is a finite
uniform upper bound to its second moment E[D2

i ], which is required to apply the standard
martingale convergence theorem. Intuitively, since any cascade must end after K(α, ε)

periods, the probability that Di is larger than some finite periods decreases exponentially
fast, and so Di must have finite moments.

Lemma 3. For every r ∈ {1, 2, . . .} there is a constant cr that depends on α and ε such
that for all i, E[|Di|r] < cr. I.e., each moment of Di is uniformly bounded, independently
of i.

Proof. Fix any arbitrary α ∈ (1/2, 1), ε ∈ (0, α(1− α)) and some positive integer i ≥ 2.
Suppose that ℓTi−1

> 0 and so Di = Ti − Ti−1 is the time elapsed from a positive public
LLR to a negative one. For any n ≥ 2, we denote the minimum number (which may not
be an integer) of temporary cascades required for Di > n by

k(n) := max
{ n− 1

⌊K(α, ε)⌋
, 1
}
.

Recall that π̄ is the supremum of the probability of receiving a positive signal conditional
on the public LLR being ℓ for all ℓ ∈ (0, cα). By part (ii) of Lemma 1, for any n ≥ 2, the
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probability of the event {Di > n} is bounded above:

P[Di > n] < π̄2+(⌊k(n)⌋−1).

Since Di is a positive random variable, it follows that for any p > 0,

lim
n→∞

npP[|Di| > n] = lim
n→∞

np

1/P[Di > n]

< lim
n→∞

np

(1/π̄)1+⌊k(n)⌋ = 0. (A.7)

For any r ≥ 1, the r-th moment of |Di| satisfies

E[|Di|r] =
∫ ∞

0

P[|Di|r > t]dt

< 1 +

∫ ∞

1

P[Di > y]ryr−1dy

= 1 +
∞∑
n=1

∫ n+1

n

P[Di > y]ryr−1dy

< 1 +
∞∑
n=1

P[Di > n]r(n+ 1)r−1,

where the second inequality follows from a change of variable y = t1/r. Since (A.7) implies
that P[Di > n] < Cn−p for some nonnegative constant C, it follows that for any p > r,

E[|Di|r] < 1 + rC
∞∑
n=1

(n+ 1)r−1

np

< 1 + r2r−1C
∞∑
n=1

1

np−r+1
< ∞,

which holds for all i. Hence, for every r ∈ {1, 2, . . .}, there exists a constant cr =

1 + r2r−1C
∑∞

n=1
1

np−r+1 , independently of i, that uniformly bounds E[|Di|r]. □

The following lemma will also be useful in the proof of Theorem 1. Define the number
wasted signal switch up to time n by

Wn =
n∑

t=1

1(st ̸= st+1) · 1(at = at+1 = st+1).

That is, Wn counts times at which the signal switches but the action does not, and after
the signal switch the action already matches the new signal. Recall that n · Qa(n) =∑n

t=1 1(at ̸= at+1) is the total number of action switches by time n. Likewise, n · Qs(n)

is the total number of signal switches by time n.

Lemma 4. For every n ≥ 1,

n · Qa(n) ≤ n · Qs(n)−Wn + 1. (A.8)
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Proof. Partition {1, . . . , n+1} into Sn+1 maximal signal runs, denoted by Rk = [τk, τk+1−
1], where τ1 = 1 and {τk}Sn+1

k=2 are the times of signal switches. Within any run Rk, the
signal st is constant, say st = s ∈ {−1,+1}.

We first show that on any run Rk, the action at switches at most once. Suppose au = s

for some u ∈ Rk. If the next period is in the learning region, au+1 = su+1 = s. If it is
in the cascade region, the public LLR evolves deterministically according to (5.3), i.e.,
ℓu+2 = Gε(ℓu+1); since Gε preserves the sign, and sign(ℓu+1) = au = s, it follows that
au+1 = sign(ℓu+2) = s. By induction, once at aligns with the signal s, it remains constant
for the remainder of the run. Thus, the only possible action switch within Rk is a single
transition from −s to s.

Next, consider the signal switch at t = τk − 1 (k > 1) which initiates the run Rk. Let
st+1 = s. There are three cases: (i) if at ̸= at+1, this signal switch contributes exactly
one action switch at time t; (ii) if at = at+1 = s, then by the argument above, the action
remains constant throughout Rk, and thus it is counted in Wn; (iii) if at = at+1 = −s,
the action may switch at most once within Rk. Hence, among the Sn signal switches,
each can generate at most one action switch, except those counted by Wn, which generate
none. Finally, the initial signal run (before the first signal switch) can contribute at most
one action switch, so we obtain n · Qa(n) ≤ n · Qs(n)−Wn + 1. □

Now, we are ready to prove the main theorem.

Proof of Theorem 1

We divide the proof of Theorem 1 into two parts. The first part proves the lower
bound. The second part proves the upper bound.

Part (i). We first prove that limn→∞Qa(n) > limn→∞Qθ(n) almost surely. Recall that
Di is the (random) duration of the i-th run of ℓ, where a run is defined as the number of
consecutive periods during which the public LLR has the same sign. Let Φ = (F1,F2, . . .)

be the filtration where each Fi = σ(D1, . . . ,Di) and thus Fj ⊆ Fi for any j ≤ i. The
process (D1,D2, . . .) is adapted to Φ since each Di is Fi-measurable. By Proposition 2
and Claim 2, there exists δ = 1/ε−M(α, ε) > 0 such that for all i ≥ 2,

E[Di | ℓTi−1
] < 1/ε− δ.

By the law of iterated expectation and the Markov property of the public LLR,

E[Di | Fi−1] = E[E[Di | ℓTi−1
,Fi−1] | Fi−1] < 1/ε− δ. (A.9)

Let Xi = Di − E[Di | Fi−1] for all i ≥ 2 and since Fi−1 ⊆ Fi, each Xi is Fi-measurable.
Define the partial sum process as

YK = X2 +
1

2
X3 + · · ·+ 1

K − 1
XK .
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By definition, E[Xi | Fi−1] = 0 for all i ≥ 2. Since each YK−1 is FK−1-measurable,

E[YK | FK−1] = E[
K∑
i=2

1

i− 1
Xi | FK−1] = YK−1 +

1

K − 1
E[XK | FK−1] = YK−1,

and so the process (YK)K≥2 forms a martingale.
By Lemma 3 and (A.9), both E[D2

i ] and E[Di | Fi−1] are uniformly bounded. Therefore,
E[X2

i ] is also uniformly bounded for all i ≥ 2. Furthermore, since E[XiXj] = 0 for any
i ̸= j, it then follows that for all K ≥ 2,

E[Y 2
K ] =

K∑
i=2

1

(i− 1)2
E[X2

i ] < ∞.

By the martingale convergence theorem, YK converges almost surely as K → ∞. It then
follows from Kronecker’s lemma that18

lim
K→∞

1

K − 1
(X2 + · · ·XK) = 0 almost surely.

Substituting the definition of Xi, we have

lim
K→∞

1

K − 1

K∑
i=2

Di = lim
K→∞

1

K − 1

K∑
i=2

E[Di | Fi−1] almost surely.

Using the bound from (A.9), this implies

lim
K→∞

1

K − 1

K∑
i=2

Di ≤ 1/ε− δ < 1/ε almost surely. (A.10)

To connect this to the action volatility, recall that at = sign(ℓt+1) for all t ≥ 2, and
T1 < T2 < · · · denote the successive times at which the public LLR switches its sign. Let
Kn =

∑n
t=1 1(sign(ℓt) ̸= sign(ℓt+1)) denote the number of sign switches occurring up to

time n. Then

TKn − T1 =
Kn∑
i=2

Di,

and since TKn ≤ n < TKn+1,

lim
n→∞

Qa(n) = lim
n→∞

Kn

n
= lim

K→∞

K

TK

= lim
K→∞

K

T1 +
∑K

i=2Di

.

Dividing the numerator and denominator by K − 1, using T1/(K − 1) → 0 as K → ∞,
and applying the bound from (A.10), we conclude that

lim
n→∞

Qa(n) ≥
1

1/ε− δ
> ε = lim

n→∞
Qθ(n) almost surely.

18This result is also known as the strong law for martingales (See p.238, Feller (1966, Theorem 2)).

26



Part (ii). We now prove that limn→∞Qs(n) > limn→∞Qa(n) almost surely. Dividing
(A.8) in Lemma 4 by n yields

Qa(n) ≤ Qs(n)−
Wn

n
+

1

n
,

so it suffices to show that

lim
n→∞

Wn

n
> 0 almost surely. (A.11)

Recall that C1 < C2 < · · · are the successive times at which the public LLR enters
the cascade region, and Ji = Ci − Ci−1 (with C0 := 0) are the inter-entry times. Let
Hi = σ(J1, . . . ,Ji) and define the martingale differences Xi = Ji − E[Ji | Hi−1]. As
shown in the proof of Proposition 1, Ji is stochastically dominated by a constant plus a
geometric random variable. Consequently, Ji has uniformly bounded second moments.
Therefore, using the bound in Proposition 1 and following a similar argument that led to
(A.10), we have

lim
M→∞

1

M

M∑
i=1

Ji ≤ ⌊K(α, ε)⌋+ 8 almost surely.

Since
∑M

i=1 Ji = CM , it follows that

lim
M→∞

M

CM
= lim

n→∞

NC(n)

n
≥ 1

⌊K(α, ε)⌋+ 8
almost surely, (A.12)

where NC(n) = max{i : Ci ≤ n} denotes the number of cascade entries by time n.
Next, we show that each cascade entry produces a wasted signal switch with uniformly

positive probability. For each i ≥ 1, define the event

Fi = {sCi = −aCi , sCi+1 = aCi}.

On this event, clearly, sCi ̸= sCi+1. By definition, at time Ci, the public LLR is in
the cascade region, and so aCi depends only on public action history but not sCi . The
condition sCi+1 = aCi then ensures that aCi+1 = aCi regardless of the region at time Ci+1.
Thus, every occurrence of Fi contributes to the wasted switch count Wn, i.e,

Wn ≥
NC(n)∑
i=1

1(Fi). (A.13)

We now lower bound the probability of Fi. Let Gi = σ(s1, . . . , sCi−1) and note that
aCi is Gi-measurable. Since the state is Markov, regardless of the history, P[θCi+1 = θCi |
Gi] = 1− ε. Conditional on this event, the signals sCi , sCi+1 are independent draws with
accuracy α. Hence, conditional on Gi, we have

P[Fi | θCi+1 = θCi ,Gi] = α(1− α),

and hence by the law of total probability,

P[Fi | Gi] ≥ (1− ε)α(1− α).
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Applying the strong law of large numbers for bounded martingale differences yields

lim
M→∞

1

M

M∑
i=1

1(Fi) ≥ (1− ε)α(1− α) almost surely.

Combining this with (A.12) and (A.13), we obtain

lim
n→∞

Wn

n
≥ lim

n→∞

1

n

NC(n)∑
i=1

1(Fi)

=

(
lim
n→∞

NC(n)

n

)
·

(
lim

M→∞

1

M

M∑
i=1

1(Fi)

)

≥ (1− ε)α(1− α)

⌊K(α, ε)⌋+ 8
> 0 almost surely,

as required by (A.11). This concludes the proof of Theorem 1.

Proof of Corollary 1. Following the same martingale argument, the long-run frequency
of action switches converges almost surely to the inverse of the limiting expected run
duration:

lim
n→∞

Qa(n) = lim
K→∞

1
1

K−1

∑K
i=2 E[Di | Fi−1]

almost surely.

We now bound this expectation. By Proposition 2 and the Markov property, E[Di |
Fi−1] < M(α, ε). Since M(α, ε) is strictly decreasing in α (Claim 1), it is uniformly
bounded by the worst case α = 1/2, and so

lim
n→∞

Qa(n) ≥
1

M(1/2, ε)
almost surely.

Using the inequality − log(1−x) ≥ x for x ∈ (0, 1), we have − log(1−2ε) ≥ 2ε. Applying
this to the definition of M(1/2, ε) gives

M(1/2, ε) = 1 +
2 log 2

− log(1− 2ε)
≤ 1 +

2 log 2

2ε
=

ε+ log 2

ε
.

Substituting this into the above inequality, we have

lim
n→∞

Qa(n) ≥
ε

ε+ log 2
almost surely.

Since limn→∞Qθ(n) = ε > 0 almost surely, dividing this limit yields the desired claim:

limn→∞Qa(n)

limn→∞Qθ(n)
≥ 1

log 2 + ε
almost surely.

□
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