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Abstract. We study whether individuals can learn the informativeness of their infor-
mation technology through social learning. As in the classic sequential social learning
model, rational agents arrive in order and make decisions based on the past actions of
others and their private signals. There is uncertainty regarding the informativeness of
the common signal-generating process. We show that in this setting asymptotic learning
about informativeness is not guaranteed and depends crucially on the relative tail distri-
butions of private beliefs induced by uninformative and informative signals. We identify
the phenomenon of perpetual disagreement as the cause of learning and characterize
learning in the canonical Gaussian environment.

1. Introduction

Social learning plays a vital role in the dissemination and aggregation of informa-
tion. The behavior of others reflects their private knowledge about an unknown state
of the world, and so by observing others, individuals can acquire additional information,
enabling them to make better-informed decisions. A key assumption in most existing
social learning models is the presence of an informative source that provides a useful
private signal to each individual. In this paper, we explore how the possibility that the
source is uninformative interferes with learning, and study the conditions under which
individuals can eventually distinguish an uninformative source from an informative one.
This question is particularly relevant today due to the proliferation of novel information
technologies, raising concerns about the accuracy and credibility of the information they
provide.1

Formally, we introduce uncertainty regarding the informativeness of the source into the
classic sequential social learning model (Banerjee, 1992; Bikhchandani, Hirshleifer, and
Welch, 1992). As usual, a sequence of short-lived agents arrives in order, each acting once
by choosing an action to match an unknown payoff-relevant state that can be either good
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1



or bad. Before making their decisions, each agent observes the past actions of her pre-
decessors and receives a private signal from a common source of information. However,
unlike in the usual setting, there is uncertainty surrounding this common information
source. In particular, we assume that this source can be either informative, generating
private signals that are independent and identically distributed (i.i.d.) conditioned on
the payoff-relevant state, or uninformative, producing private signals that are i.i.d. but
independent of the payoff-relevant state. Both the payoff-relevant state and the infor-
mativeness of the source are realized independently at the outset and are assumed to be
fixed throughout.

If an outside observer, who aims to evaluate the informativeness of the source, were to
have access to the private signals received by the agents, he would gradually accumulate
empirical evidence about the source and eventually learn its informativeness. However,
when only the history of past actions is observable, his inference problem becomes more
challenging—not only because there is less information available, but also because these
past actions are correlated with each other. This correlation arises from social learning
behavior, where agents’ decisions are influenced by the inferences they draw from ob-
serving others’ actions. We say that asymptotic learning of informativeness holds if the
outside observer’s belief about the source’s informativeness converges to the truth, i.e.,
it converges almost surely to one when the source is informative and to zero when it is
uninformative. The questions we aim to address are: Can learning about informativeness
be achieved asymptotically, and if so, under what conditions? Furthermore, what are the
behavioral implications of such learning?

Our question of learning about informativeness is new within the realm of social learn-
ing. In the absence of information uncertainty, a common inquiry in this literature is
whether agents engaged in social learning behavior ultimately choose the correct action,
i.e., the action that matches the payoff-relevant state. However, in the presence of infor-
mation uncertainty, it is unclear whether agents will eventually choose the same action,
let alone whether that action is correct. In fact, we show that even when agents eventu-
ally take the correct action, they may still remain uncertain about its correctness, as this
now depends on whether the source’s informativeness is fully revealed. This result high-
lights the close connection between learning about informativeness and learning about
the payoff-relevant state, as we will discuss in Section 5. Therefore, to establish societal
confidence in decision-making, it is important to understand the conditions under which
asymptotic learning of informativeness holds.

We consider unbounded signals (Smith and Sørensen, 2000) under which the agent’s
private belief induced by an informative signal can be arbitrarily strong. We focus on
this setting since otherwise, learning about the source’s informativeness can easily be
precluded by agents’ lack of response to their private signals. As shown by Smith and
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Sørensen (2000), with bounded signals, an information cascade—where agents stop re-
sponding to their private signals—would be triggered, blocking further information ag-
gregation. In contrast, with unbounded signals, cascades do not form, thus allowing
information to continue accumulating through agents’ actions.

Our main result (Theorem 1) shows that even with unbounded signals, achieving as-
ymptotic learning of informativeness is far from guaranteed. The key factor in determin-
ing such learning lies in the tail distributions of agents’ private beliefs. Specifically, it
depends on whether the belief distribution induced by uninformative signals has fatter or
thinner tails compared to that induced by informative signals. More precisely, we show
that asymptotic learning of informativeness holds when uninformative signals have fatter
tails than informative signals, but fails when uninformative signals have thinner tails.

For example, consider an informative source that generates Gaussian signals with unit
variance and a mean of +1 if the payoff-relevant state is good and a mean of −1 if
the state is bad. Meanwhile, the uninformative source generates Gaussian signals with
mean 0, independent of the state. If the uninformative source generates signals with a
variance strictly greater than one, then the uninformative signals have fatter tails, and
thus asymptotic learning of informativeness holds. In contrast, when the uninformative
signals have a variance strictly less than one, they exhibit thinner tails, and so asymptotic
learning of informativeness fails.

As another illustration of the main result, consider the case where the informative
signals follow the same distributions as before, but the uninformative signals are chosen
uniformly from the bounded interval [−ε, ε] for some small ε > 0. In this case, the
distribution of private beliefs induced by these uninformative signals also has bounded
support. Consequently, it can be viewed as having extremely thinner tails compared to
the informative Gaussian signals. Hence, Theorem 1 implies that the informativeness
of the source cannot be fully revealed. Nevertheless, under such an informative source,
almost all agents individually learn its informativeness: Once they receive a signal outside
the support [−ε, ε], which is highly probable for small ε, they infer that it can only come
from the normal distribution, indicating that the source must be informative. However,
an outside observer who only observes the agents’ actions is unable to determine the
informativeness of the source.

The mechanism behind the main result is as follows. First, in our model, despite infor-
mation uncertainty, agents always act as if the signals are informative. Therefore, when
the source is indeed informative and generates unbounded signals, agents will eventually
take the correct action. Now, suppose the source is uninformative and generates signals
with thinner tails. In this case, it is unlikely that agents will receive signals extreme
enough to break the consensus on actions, so they usually mimic their predecessors. As
a result, an outside observer who only observes agents’ actions cannot discern that the
source is uninformative, as an action consensus will be reached under both uninformative
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and informative sources. In contrast, suppose the source is uninformative but generates
signals with fatter tails. In this scenario, extreme signals are more likely, allowing agents
to break the consensus; in fact, both actions will be taken infinitely often, so agents will
never settle on an action consensus. Hence, an outside observer who observes an infinite
number of action switches learns that the source is uninformative.

For some private belief distributions, their relative tail thickness is neither thinner nor
fatter. For these, we show that the same holds: Asymptotic learning of informativeness
is achieved if and only if conditioned on the source being uninformative, agents never
settle on an action consensus (Proposition 1). In the Gaussian setting where informative
signals are symmetric and the relative tail thickness is incomparable, we complement
our main result by showing that learning holds if the uninformative signals have mean
zero (Theorem 2). As for agents’ behavior, when the source is informative, as mentioned
before, they eventually choose the correct action, regardless of information uncertainty.
Nevertheless, we show that in this case they are certain that the action is correct if and
only if the source’s informativeness is fully revealed (Proposition 2). In contrast, when
the source is uninformative, agents are clearly not guaranteed to settle on the correct
action; in fact, their actions may or may not converge at all. Proposition 1 shows that
an outside observer eventually learns the informativeness of the source if and only if the
agents’ actions do not converge when the source is uninformative.

Related Literature. Our paper contributes to a rich literature on sequential social
learning. Assuming that the common source of information is always informative, the
primary focus of this literature has been on determining whether agents can eventually
learn to choose the correct action. Various factors, such as the information structure
(Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992; Smith and Sørensen, 2000)
and the observational networks (Çelen and Kariv, 2004; Acemoglu, Dahleh, Lobel, and
Ozdaglar, 2011; Lobel and Sadler, 2015), have been extensively studied to analyze their
impact on information aggregation, including its efficiency (Rosenberg and Vieille, 2019)
and the speed of learning (e.g., Vives, 1993; Hann-Caruthers, Martynov, and Tamuz,
2018). However, the question of learning about the informativeness of the source—which
is the focus of this paper—remains largely unexplored.2

A few papers explore the idea of agents having access to multiple sources of information
in the context of social learning. For example, Liang and Mu (2020) consider a model
in which agents endogenously choose from a set of correlated information sources, and
the acquired information is then made public and learned by other agents. They focus
on the externality in agents’ information acquisition decisions and show that information
complementarity can result in either efficient information aggregation or “learning traps,”
in which society gets stuck in choosing suboptimal information structures. In a different

2For comprehensive surveys on recent developments in the social learning literature, see e.g., Golub and
Sadler (2017); Bikhchandani, Hirshleifer, Tamuz, and Welch (2021).
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setting, Chen (2022) examines a sequential social learning model in which ambiguity-
averse agents have access to different sources of information. Consequently, information
uncertainty arises in his model because agents are unsure about the signal precision
of their predecessors. He shows that under sufficient ambiguity aversion, there can be
information cascades even with unbounded signals. Our paper differs from these prior
works as we focus on rational agents with access to a common source of information of
unknown informativeness.

Another way of viewing our model is by considering a social learning model with four
states: The source is either informative with the good or bad state, or uninformative
with either the good or bad state. In such multi-state settings, recent work by Arieli
and Mueller-Frank (2021) demonstrates that pairwise unbounded signals are necessary
and sufficient for learning, when the decision problem that agents face includes a distinct
action that is uniquely optimal for each state. This is not the case in our model, because
the same action is optimal in different states, e.g., when the source is uninformative, and
so even when agents observe a very strong signal indicating that the state is uninformative,
they do not reveal it in their behavior.

More recently, Kartik, Lee, Liu, and Rappoport (2022) consider a setting with multiple
states and actions on general sequential observational networks. They identify a sufficient
condition for learning —“excludability” —that jointly depends on the information struc-
ture and agents’ preferences. Roughly speaking, this condition ensures that agents can
always displace the wrong action, which is their driving force for learning. In our model,
when the source is uninformative, agents cannot displace the wrong action as all signals
are pure noise.3 Conceptually, our approach differs from theirs as we are interested in
identifying the uninformative state from the informative one, instead of identifying the
payoff-relevant state.

Our paper is also related to the growing literature on social learning with misspecified
models. Bohren (2016) investigates a model where agents fail to account for the corre-
lation between actions, demonstrating that different degrees of misperception can lead
to distinct learning outcomes. In a broader framework, Bohren and Hauser (2021) show
that learning remains robust to minor misspecifications. In contrast, Frick, Iijima, and
Ishii (2020) find that an incorrect understanding of other agents’ preferences or types can
result in a severe breakdown of information aggregation, even with a small amount of mis-
perception. Later, Frick, Iijima, and Ishii (2023) propose a unified approach to establish
convergence results in misspecified learning environments where the standard martingale
approach fails to hold. On a more positive note, Arieli, Babichenko, Müller, Pourbabaee,
and Tamuz (2023) illustrate that by being mildly condescending—misperceiving others
as having slightly lower-quality of information—agents may perform better in the sense
that on average, only finitely many of them take incorrect actions.

3This observation can also be seen from Theorem 2 in Kartik, Lee, Liu, and Rappoport (2022).
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2. Model

2.1. Setup. There is an unknown binary state of the world θ ∈ {g, b}, chosen at time
0 with equal probability. We refer to g as the good state and b as the bad state. A
countably infinite set of agents indexed by time t ∈ N = {1, 2, . . .} arrive in order, each
acting once. The action of agent t is at ∈ A = {g, b}, with a payoff of one if her action
matches the state θ and zero otherwise. Before agent t chooses an action, she observes
the history of actions made by her predecessors Ht = (a1, . . . , at−1) and receives a private
signal st, taking values in a measurable space (S,Σ).

A pure strategy of agent t is a measurable function σt : A
t−1 × S → A that selects

an action for each possible pair of observed history and private signal. A pure strategy
profile σ = (σt)t∈N is a collection of pure strategies of all agents. A strategy profile is a
Bayesian Nash equilibrium—referred to as equilibrium hereafter—if no agent can unilat-
erally deviate from this profile and obtain a strictly higher expected payoff conditioned on
their information. Given that each agent acts only once, the existence of an equilibrium
is guaranteed by a simple inductive argument. In equilibrium, each agent t chooses the
action at that maximizes her expected payoff given the available information:

at ∈ argmax
a∈A

E[1(θ = a)|Ht, st]. (1)

Below, we make a continuity assumption which implies that agents are never indifferent,
and so there is a unique equilibrium.

2.2. The Informativeness of the Source. So far, the above setup is the canonical
setting of the sequential social learning model (Banerjee, 1992; Bikhchandani, Hirshleifer,
and Welch, 1992; Smith and Sørensen, 2000). Our model builds on this setting and
introduces another dimension of uncertainty regarding the informativeness of a common
source. Specifically, at time 0, independent of the payoff-relevant state θ, nature chooses
an additional binary state ω ∈ {0, 1}, where ω = 1 with probability γ ∈ (0, 1).4 When
ω = 1, the source is informative and sends i.i.d. signals across agents conditional on
θ, with distribution µθ. When ω = 0, the source is uninformative and still sends i.i.d.
signals, but independently of θ, with distribution µ0. The realization of ω determines the
signal-generating process for all agents. Throughout, we denote by P0[·] := P[· | ω = 0]

and P1[·] := P[· | ω = 1] the conditional probability distributions given ω = 0 and ω = 1,
respectively. Similarly, we use the notation P1,g[·] := P[· | ω = 1, θ = g] to denote the
conditional probability distribution given ω = 1 and θ = g. We use an analogous notation
for ω = 1 and θ = b.

We first observe that, despite the uncertainty regarding the informativeness of the
source, in equilibrium, each agent chooses the action that is most likely to match the
state, conditional on the source being informative.
4Our results do not depend on the independence assumption between θ and ω. They hold true as long
as conditioned on ω = 0, both realizations of θ are equally likely.
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Lemma 1. The equilibrium action for each agent t is

at ∈ argmax
a∈A

P1[θ = a|Ht, st]. (2)

That is, agents always act as if signals are informative, irrespective of the underlying
signal-generating process. Intuitively, treating signals as informative—even when they
are pure noise—does not adversely affect agents’ payoffs, since in the absence of any
useful information, each agent with a uniform prior is indifferent between the available
actions. Essentially, this result ensures that agents always respond to their private signals.
Later, in Section 7, we show that when the prior is not uniform, agents eventually stop
responding to signals, and consequently, the informativeness of the source can never be
fully revealed.

2.3. Information Structure. Assume the distributions µg, µb, and µ0 are distinct5 and
mutually absolutely continuous, so no signal fully reveals either state θ or ω. As a
consequence, conditioned on ω = 1, the log-likelihood ratio of any signal

ℓt = log
dµg

dµb

(st),

is well-defined, and we call it the agent’s private log-likelihood ratio. Since regardless of
the realization of ω, agents always act as if the signals are informative (Lemma 1), it is
sufficient to consider ℓt to capture their behavior.6 We denote by Fg and Fb the cumulative
distribution functions (CDFs) of ℓt conditioned on the event that ω = 1 and θ = g and
the event that ω = 1 and θ = b, respectively. We denote by F0 the CDF of ℓt conditioned
on ω = 0. All conditional CDFs Fg, Fb, and F0 are mutually absolutely continuous, as
µg, µb and µ0 are. Let fg, fb and f0 denote the corresponding density functions of Fg, Fb

and F0 whenever they are differentiable.
We focus on unbounded signals in the sense that the agent’s private log-likelihood ratio

can take on arbitrarily large or small values, i.e., for any M ∈ R, there exists a positive
probability that ℓt > M and a positive probability that ℓt < −M . We informally refer
to a signal st as extreme when the corresponding ℓt it induces has a large absolute value.
A common example of unbounded private signals is the case of Gaussian signals, where
st follows a normal distribution N (m(ω,θ), σ

2) with variance σ2 and mean m(ω,θ) that
depends on the pair of states (ω, θ). An extreme Gaussian signal is a signal that is, for
example, 5− σ away from the mean m(ω,θ).

We make two assumptions for expository simplicity. First, we assume that the pair
(Fg, Fb) of informative conditional CDFs is symmetric around zero, i.e., Fg(x)+Fb(−x) =

5Formally, two distributions are distinct if there exists a set to which they assign a different measure.
From an economic perspective, ensuring that µ0 is distinct from both µg and µb prevents a situation in
which there is a ‘fake’ information technology that mimics the informative source at one of the realizations
of θ but is actually uninformative. Similarly, µg being distinct from µb means that in the informative
state, the signals are actually informative.
6Formally, the sequence of actions a1, . . . , at is determined by ℓ1, . . . , ℓt.
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1. Given that the prior on θ is uniform, this assumption is equivalent to requiring our
model to be invariant with respect to a relabeling of the payoff-relevant state. Second, we
assume that all conditional CDFs—Fg, Fb, and F0—are continuous, so agents are never
indifferent between actions.

In addition, we assume that Fb has a differentiable left tail, i.e., it is differentiable
for all x negative enough, and its probability density function fb satisfies the condition
that fb(−x) < 1 for all x large enough. By symmetry, this implies that Fg also has a
differentiable right tail and its density function fg satisfies the condition that fg(x) < 1 for
all x large enough. This is a mild technical assumption that holds for every non-atomic
distribution commonly used in the literature, including the Gaussian distribution. It
holds, for instance, whenever the density tends to zero at infinity.

2.4. Asymptotic Learning of Informativeness. We denote by qt := P[ω = 1|Ht] the
belief that an outside observer assigns to the source being informative after observing the
history of agents’ actions from time 1 to t−1. As this observer collects more information
over time, his belief qt converges almost surely since it is a bounded martingale. To
ensure that he eventually learns the truth regarding the informativeness of the source,
we introduce the following notion of learning.

Definition 1. Asymptotic learning of informativeness holds if for all ω ∈ {0, 1},

lim
t→∞

qt = ω Pω-almost surely.

That is, conditioned on an informative source, the outside observer’s belief that the
source is informative converges to one almost surely; meanwhile, conditioned on an unin-
formative source, his belief that the source is informative converges to zero almost surely.
As we explain below in Section 4.1, when all signals are publicly observable, asymptotic
learning of informativeness is always attainable, regardless of the underlying information
structure.

3. Relative Tail Thickness

To study the conditions for achieving asymptotic learning of informativeness, it is
crucial to understand the concept of relative tail thickness, which compares the tail
distributions of agents’ private log-likelihood ratios induced by different signals. This
comparison is important because it captures the relative likelihood of generating extreme
signals from different sources.

Formally, for any pair of CDFs (F0, Fθ) where θ ∈ {g, b} and some x ∈ R+, we denote
their corresponding ratios by

Lθ(x) :=
F0(−x)

Fθ(−x)
and Rθ(x) :=

1− F0(x)

1− Fθ(x)
.

For large x, Lθ(x) and Rθ(x) represent the left and right tail ratios of F0 over Fθ, respec-
tively. The following definitions of fatter and thinner tails describe situations in which

8



extreme signals are either more or less likely to occur under an uninformative source
compared to an informative one.7

Definition 2. (i) The uninformative signals have fatter tails than the informative sig-
nals if there exists ε > 0 such that

Lb(x) ≥ ε for all x large enough,

and Rg(x) ≥ ε for all x large enough.

(ii) The uninformative signals have thinner tails than the informative signals if there
exists ε > 0 such that

either Lg(x) ≤ 1/ε for all x large enough,

or Rb(x) ≤ 1/ε for all x large enough.

That is, for the uninformative signals to have fatter tails, both their corresponding
left and right tail ratios must eventually be bounded from below. Conversely, for the
uninformative signals to have thinner tails, at least one of the tail ratios—either left or
right—must eventually be bounded from above. The “and” condition is important for
defining fatter tails, as it ensures that extreme signals of both types (positive and neg-
ative) occur frequently enough to prevent agents from reaching an action consensus. In
contrast, the “or” condition for thinner tails requires only the infrequency of at least one
type of extreme signal, thus allowing agents to reach a consensus with positive proba-
bility. As discussed in Section 4.2, determining whether settling on an action consensus
is possible under an uninformative source is key to understanding whether asymptotic
learning of informativeness holds.

Note that the first condition Lb(x) ≥ ε implies that Lg(x) ≥ ε. This follows from the
well-known fact that Fg exhibits first-order stochastic dominance over Fb, i.e., Fg(x) ≤
Fb(x) for all x ∈ R (see, e.g., Smith and Sørensen, 2000; Chamley, 2004; Rosenberg and
Vieille, 2019). Similar statements apply to the remaining three conditions. Furthermore,
note that the uninformative signals cannot have both fatter and thinner tails simulta-
neously, as Fg and Fb represent distributions of the agent’s private log-likelihood ratio.8

However, there are distributions under which the uninformative signals have neither fatter
nor thinner tails. For these cases, we characterize the conditions for asymptotic learning
of informativeness in the canonical Gaussian environment (see Section 4.3).

Intuitively, compared to informative signals, uninformative signals with fatter tails are
more likely to exhibit extreme values. Thus, by Bayes’ Theorem, observing an extreme
7In statistics, the notion of relative tail thickness has also been explored. Our definition of thinner
tails is closest to that of Rojo (1992), where a CDF F is considered not more heavily tailed than G if
lim supx→∞(1− F (x))/(1−G(x)) < ∞. Other notions of relative tail thickness, represented in terms of
density quantile functions, can be found in Parzen (1979) and Lehmann (1988). See Rojo (1992) for a
discussion of the relationship between these existing notions.
8In particular, Fg and Fb satisfy the following inequality: exFg(−x) ≤ Fb(−x), for all x ∈ R.
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Figure 3.1. Probability density functions of informative Gaussian signals
and their corresponding uninformative Gaussian signals with fatter tails
(on the left) and with thinner tails (on the right).

signal suggests that the source is uninformative. In contrast, uninformative signals with
thinner tails tend to exhibit moderate values, so observing an extreme signal in this case
suggests that the source is informative. Next, we provide three examples of uninformative
signals with either fatter or thinner tails.

Example 1 (Gaussian Signals). Consider the case where Fg is normal with mean +1 and
unit standard deviation and Fb is also normal with mean −1 and unit standard deviation.

Suppose that F0 has zero mean. If it has a standard deviation of 3, then the uninfor-
mative signals have fatter tails. In this scenario, observing an extreme signal, such as
anything around 11, indicates that it is much more likely that the source is uninforma-
tive—where the signal is less than 4− σ away—than for an informative 10− σ signal to
be generated under Fg. Conversely, if the standard deviation of F0 is 1/3, the uninfor-
mative signals have thinner tails, and thus an extreme signal suggests that the source
is informative. A graphical example of uninformative Gaussian signals with fatter and
thinner tails is shown in Figure 3.1.9

Example 2 (First-Order Stochastically Dominated (FOSD) Signals). Suppose that F0

first-order stochastically dominates Fg, i.e., F0(x) ≤ Fg(x), for all x ∈ R. In other words,
the uninformative signals are more likely to exhibit high values than the informative
signals associated with the good state. It follows immediately from Lg(x) ≤ 1 for all
x ∈ R that the uninformative signals have thinner tails than the informative signals.

Now, suppose that an extreme positive signal is observed. It is highly unlikely that the
source is informative and associated with the bad state. Instead, this suggests that the
source is more likely to be either uninformative or informative but associated with the
good state. However, one cannot exclude either possibility based on such an observation,
and hence it does not provide conclusive evidence about the source’s informativeness.

9See Lemma 8 in the appendix for a more general comparison of the relative tail thickness for Gaussian
signals with different variances.
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Example 3 (Mixture Signals). For any pair of distributions (Fg, Fb) and any α ∈ (0, 1),
let F0 = αFg+(1−α)Fb. Observe that the uninformative signals represented by F0 have
fatter tails than the informative signals.10 In particular, when α = 1/2, the corresponding
mixture distribution F0 = (Fg +Fb)/2 coincides with the unconditional distribution of ℓt
generated by an informative source. Thus, we can think of this uninformative source as
being a priori indistinguishable from the informative one.

Alternatively, the mixture distribution F0 can be viewed as generating conditionally
i.i.d. signals, but instead of conditioning on the state θ, they are generated conditioned
on a different state η. Specifically, suppose that in each period, the state η is randomly
drawn from the same set {g, b}, independent of θ. Say, with probability α, the event
η = g occurs and a signal is drawn from the distribution Fg. With the complementary
probability, the event η = b occurs, and a signal is drawn from the distribution Fb.11

4. Main Results

4.1. A Benchmark. As a benchmark, we briefly discuss the case where all signals are
observed by the outside observer.12 Depending on the realizations of θ and ω, these signals
are distributed according to either µg, µb or µ0. Since these measures are distinct, as the
sample size grows, this observer eventually learns which distribution is being sampled.
Formally, at time t, the empirical distribution of the signals µ̂t assigns to a measurable
set B ⊆ S the probability

µ̂t(B) :=
1

t

t∑
τ=1

1(sτ ∈ B).

Conditional on both states ω and θ, this is the empirical mean of i.i.d. Bernoulli random
variables. Hence, by the strong law of large numbers, for every measurable set B ⊆ S,

lim
t→∞

µ̂t(B) = µ(ω,θ)(B) almost surely,

where µ(1,g) = µg, µ(1,b) = µb and µ(·,0) = µ0.
Thus, regardless of the underlying signal-generating process, any uncertainty concern-

ing the informativeness of the source is eventually resolved if all signals are publicly
observable. Next, we turn to our main setting where the signals remain private and only
the actions are observable. Clearly, in this setting, less information is available—observed
actions contain less information than private signals. In addition, one needs to take into
account the positive correlation between these observed actions.

10To see this, fix any constant α ∈ (0, 1) and let F0 = αFg + (1 − α)Fb. Since CDFs always take
nonnegative values, for any x ∈ R, F0(x) ≥ (1 − α)Fb(x). Similarly, 1 − F0(x) = α(1 − Fg(x)) + (1 −
α)(1− Fb(x)) ≥ α(1− Fg(x)). Let ε = min{α, 1− α}, and thus by definition F0 has fatter tails.
11When α = 1/2, we can think of these uninformative signals as being generated based on a sequence of
fair and independent coin tosses.
12Equivalently, one can let the outside observer observe all agents’ actions in addition to their signals.
Since actions contain no additional payoff relevant information, it suffices to only consider the signals.
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4.2. Public Actions. We now present our main result (Theorem 1). In contrast to the
public signal benchmark, our main result shows that achieving asymptotic learning of
informativeness is no longer guaranteed. In fact, the key determinant of learning about
informativeness is the relative tail thickness between the uninformative and informative
signals, as introduced in Definition 2.

Theorem 1. When the uninformative signals have fatter (thinner) tails than the infor-
mative signals, asymptotic learning of informativeness holds (fails).

Theorem 1 demonstrates that an outside observer, who learns from observing agents’
actions, eventually distinguishes between informative and uninformative sources if the
latter source generates signals with greater dispersion than the former. In contrast, when
the uninformative signals are relatively concentrated compared to informative ones, such
differentiation becomes unattainable for the observer.

For example, consider informative signals that follow a normal distribution with unit
variance and mean +1 and −1, respectively. When the uninformative signals follow a
normal distribution with a variance of 2, they have fatter tails, and thus Theorem 1 implies
that asymptotic learning of informativeness holds. In contrast, when the uninformative
signals follow a normal distribution with a variance of 1/2, they have thinner tails, and
Theorem 1 implies that such learning fails. More generally, Theorem 1 can be immediately
applied to cases where the variance of the uninformative Gaussian signals, τ 2, is strictly
higher or lower than that of the informative Gaussian signals, σ2. This is because the
relative tail thickness of normal distributions is determined solely by their variances.
That is, in this setting, asymptotic learning of informativeness holds if τ > σ and fails if
τ < σ.13

The idea behind our proof of Theorem 1 is as follows. First consider the case where
the source is informative. In this case, the likelihood of generating extreme signals that
overturn a long streak of correct action consensus decreases rapidly. Consequently, agents
will eventually choose the correct action since they always treat signals as informative.
Now, suppose that the source is uninformative, and instead of reaching a consensus, agents
continue to disagree indefinitely, leading to both actions being taken infinitely often. If
this were the case, an outside observer would eventually be able to distinguish between
informative and uninformative sources, as they induce distinct behavioral patterns among
agents. Whether these disagreements persist or not depends on whether the tails of the
uninformative signals are thick enough to generate these overturning extreme signals.

In summary, when the tails of uninformative signals are sufficiently thick, overturn-
ing extreme signals occur frequently enough so that disagreements persist. Conversely,
when the tails are relatively thin, these signals are less likely to occur, and disagreements

13For more details, see Lemma 8 in the appendix.
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eventually cease. Hence, we conclude that the relative tail thickness between uninforma-
tive and informative signals plays an important role in determining the achievement of
asymptotic learning of informativeness.

Perpetual Disagreement. As mentioned above, if agents’ actions do not converge under
an uninformative source, then intuitively, the outside observer can infer that the source
is uninformative. To formally establish the key mechanism underlying our main result,
we define the event in which agents’ actions never converge as perpetual disagreement.
Let S :=

∑∞
t=1 1(at ̸= at+1) denote the total number of action switches, so that the event

{S = ∞} is the perpetual disagreement event. It turns out that perpetual disagreement
under an uninformative source is not only a sufficient condition for asymptotic learning
of informativeness but also a necessary condition, as shown in the following proposition.

Proposition 1. Asymptotic learning of informativeness holds if and only if conditioned
on ω = 0, the perpetual disagreement event occurs almost surely.

The proof of Proposition 1 uses the idea of an outside observer whose goal is to guess the
informativeness of the source. Note that achieving asymptotic learning of informativeness
means that eventually, this outside observer can always make the correct guess. Since he
observes all agents’ actions, he expects to see the agents form an action consensus—i.e.,
their actions converge—when the source is informative. Therefore, if he observes that
actions never converge, he infers that the source must be uninformative and makes the
correct guess. Now, suppose to the contrary that agents’ actions could also converge
when the source is uninformative. This would imply that action convergence is possible
under both informative and uninformative sources. As a result, the observer would no
longer be certain of the source’s informativeness, contradicting the hypothesis that he
always makes the correct guess.

4.3. Gaussian Private Signals. While Theorem 1 provides valuable insight into the
role of relative tail thickness in learning about informativeness, there are situations where
uninformative signals have neither fatter nor thinner tails compared to informative sig-
nals, rendering Theorem 1 inapplicable. For example, consider a scenario where F0, Fg,
and Fb are normal distributions with the same variance and mean 0, 1, and −1, respec-
tively. As x approaches infinity, both F0(−x) and Fb(−x) approach zero, but the former
goes to zero much faster than the latter, leading Lb(x) to converge to zero. As a re-
sult, F0 does not have fatter tails. Similarly, both Lg(x) and Rb(x) tend to infinity as x

approaches infinity, so F0 does not have thinner tails either.
To complement the findings of Theorem 1, we focus on the Gaussian environment

where all signals are normal and share the same variance σ2. The informative signals
are symmetric with mean +1 and −1, respectively, while the uninformative signals have
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mean m0 ∈ (−1, 1).14 In this setting, a simple calculation shows that the agent’s private
log-likelihood ratio is directly proportional to the private signal: ℓt = 2st/σ

2. As a conse-
quence, all distributions Fg, Fb, and F0 are also Gaussian. In the following result, we show
that asymptotic learning of informativeness is achieved if and only if the uninformative
signals are symmetric around zero.

Theorem 2. Suppose all private signals are Gaussian with the same variance, where
informative signals have means −1 and +1, and uninformative signals have mean m0 ∈
(−1, 1). Then, asymptotic learning of informativeness holds if and only if m0 = 0.

Theorem 2 shows that in a Gaussian setting with symmetric informative signals, as-
ymptotic learning of informativeness occurs only when the uninformative signals are also
symmetric around zero. The intuition is similar to that used in establishing Proposition
1: Given that all signals have the same variance, any deviation of the mean of F0 from
zero shifts F0 closer to either Fg or Fb, causing the uninformative signals to resemble
the corresponding informative signals. As a result, under such an uninformative source,
agents will also reach an action consensus, which in turn prevents an outside observer
from fully distinguishing between informative and uninformative sources.

4.4. Numerical Simulation. To further illustrate our main result, we use Monte Carlo
simulations to numerically examine the belief process of an outside observer and the cor-
responding action switches among agents. We fix the pair of informative Gaussian signal
distributions to be (µg, µb) where µg = N (+1, 2) and µb = N (−1, 2). These processes
are simulated under two scenarios: one with fatter-tailed uninformative Gaussian signals
with distribution µ0 = N (0, 3), and the other with thinner-tailed uninformative Gaussian
signals with distribution µ0 = N (0, 1).15 For each uninformative source, we conduct these
simulations 1,000 times, redrawing the payoff-relevant state each time, and calculate the
averages for each period. This yields approximations for the expected belief and the ex-
pected total number of action switches in the presence of uninformative signals. Figure
4.1 displays the results of these simulations.

What immediately stands out is that under fatter-tailed uninformative signals, the be-
lief of the outside observer that the source is informative decreases much faster compared
to thinner-tailed uninformative signals. By period 60, this belief is approximately 0.3 un-
der fatter-tailed uninformative signals, which is less than two-thirds of the belief observed
under thinner-tailed uninformative signals. These findings align with the predictions of
Theorem 1, suggesting that in the former case the observer will eventually learn that
the source is uninformative. In contrast, with thinner-tailed uninformative signals, the

14In the case where all Gaussian signals share the same variance and the absolute value of m0 is strictly
greater than one, the uninformative signals clearly have thinner tails. For example, when m0 = 2, it
reduces to Example 2. Thus, our main result implies that asymptotic learning of informativeness fails.
15Note that in this case, the agent’s private log-likelihood ratio ℓt = st, so F0, Fg and Fb have the same
distribution as µ0, µg and µb, respectively.
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Figure 4.1. The belief that the source is informative (on the left) and the
total number of action switches (on the right) under uninformative signals
with fatter and thinner tails.

decline in the belief about the source’s informativeness plateaus around 0.48 after period
20, suggesting that the observer will not be able to learn that the source is uninformative.

As shown in Proposition 1, the key mechanism driving learning about informativeness is
the persistence of disagreements under an uninformative source. Recall that the intuition
is that the uninformative source with fatter tails has a higher probability of generating
extreme signals, which in turn, prevents agents from converging to a consensus. This
phenomenon is evident in the right plot of Figure 4.1, where the average total number of
action switches under fatter-tailed uninformative signals increases over time. In contrast,
under the thinner-tailed uninformative signals, the total number of switches plateaus in
a short amount of time, suggesting that perpetual disagreement does not occur in this
case.

5. Connections to Other Notions of Learning

In this section, we discuss the relationship between asymptotic learning of informative-
ness and other notions of learning that have appeared in the literature. One common
notion, which concerns the convergence of agents’ actions, is known as herding. Another
notion, which refers to the convergence of agents’ beliefs, is called complete learning. Both
of these notions focus on the payoff-relevant state. As is well-known, when the source is
always informative and generates unbounded signals, agents will eventually choose the
correct action, and their beliefs will converge to the truth. By contrast, we will demon-
strate that in the presence of information uncertainty, agents may eventually choose the
correct action without their beliefs converging to the truth.

Formally, we say that correct herding holds if limt→∞ at = θ almost surely. That is,
the event that all but finitely many agents take the correct action occurs with probability
one. Meanwhile, let pt = P[θ = g|Ht] denote the social belief of agent t. This is the belief
assigned by agent t to the good state, given only the history of past actions. We say
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that complete learning holds if agents’ social beliefs converge to the truth, i.e., pt almost
surely converges to one when θ = g and to zero when θ = b.

Note that in our model, since agents always behave as if the signals are informative,
when the source is indeed informative and generates unbounded signals, correct herding
also holds:

lim
t→∞

at = θ P1-almost surely.

Hence, when the source is informative, agents will eventually choose the correct action,
regardless of whether asymptotic learning of informativeness is achieved. In contrast,
when the source is uninformative, agents are clearly not guaranteed to choose the correct
action; in fact, their actions may or may not converge at all. Indeed, as suggested
by Proposition 1, in this case, their actions do not converge if asymptotic learning of
informativeness holds, or they may converge to the wrong action if such learning fails.

Nevertheless, achieving correct herding under an informative source does not imply
the attainment of complete learning. In this case, although agents eventually take the
correct action, they remain uncertain about its correctness unless asymptotic learning of
informativeness holds. Conversely, if the informativeness of the source remains uncertain,
so do agents’ beliefs about the correctness of their action consensus. This relationship
is summarized in Proposition 2. On the other hand, when the source is uninformative,
Proposition 3 shows that achieving asymptotic learning of informativeness is equivalent
to the social belief converging to the uniform prior. Together, these two propositions
demonstrate the connections between learning about informativeness and learning about
the payoff-relevant state.

Proposition 2. Asymptotic learning of informativeness holds if and only if conditioned
on ω = 1, complete learning holds.

The proof of Proposition 2 uses the idea of an outside observer who observes the same
public information as agent t, but does not observe her private signal. So, at time t, the
observer’s belief is equal to the social belief. As long as the observer remains uncertain
about the source’s informativeness, he cannot fully trust the public information, which
consists of agents’ actions. Conversely, once the source’s informativeness is confirmed,
this public information becomes highly accurate, thus enabling the observer’s belief to
converge to the truth.

Proposition 3. Asymptotic learning of informativeness holds if and only if conditioned
on ω = 0, limt→∞ pt = 1/2 almost surely.

The proof of Proposition 3 follows a similar approach to Proposition 2 and applies
the result of Proposition 1. One direction is straightforward: if the observer learns that
the source is uninformative, then the social belief must converge to the prior as the
action history contains no information about the payoff-relevant state. For the other
direction, suppose by contraposition that the observer does not learn that the source is
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uninformative. Then, Proposition 1 implies that agents may eventually reach a consensus
on some action. Since this is also possible under an informative source, the observer
cannot fully dismiss the possibility that agents’ actions are informative. As a result, his
belief about the payoff-relevant state is not guaranteed to remain at the prior.

6. Analysis

In this section we first examine how agents update their beliefs. We present two
standard yet useful properties of their belief updating process, namely, the overturning
principle and stationarity. Then, based on Proposition 1, we characterize asymptotic
learning of informativeness in terms of immediate agreement—the event in which all
agents immediately reach a consensus on some action—which simplifies the problem.
Finally, we provide a proof sketch of our main result (Theorem 1) at the end of this
section.

6.1. Agents’ Beliefs Dynamics. Since agents always act as if signals are informative
(Lemma 1), we focus on how agents update their beliefs conditioned on an informative
source. We denote by πt the public belief that agent t assigns to the good state after
observing the history of actions Ht, i.e., πt := P1[θ = g|Ht]. The corresponding log-
likelihood ratio of πt is given by:

rt := log
πt

1− πt

= log
P1[θ = g|Ht]

P1[θ = b|Ht]
.

Furthermore, let Lt denote the log-likelihood ratio of the posterior belief that agent t

assigns to the good state over the bad state after observing both the history of actions
and her private signal:

Lt := log
P1[θ = g|Ht, st]

P1[θ = b|Ht, st]
.

Recall that ℓt is the log-likelihood ratio of agent t’s private belief induced by a signal st
conditioned on ω = 1. By Bayes’ rule, we can write

Lt = rt + ℓt.

It follows from (2) that, in equilibrium, agent t chooses action g if ℓt ≥ −rt and action b

if ℓt < −rt. Hence, conditioned on the state θ and the event that ω = 1, the probability
that agent t chooses action g is 1− Fθ(−rt) and the probability that she chooses action
b is Fθ(−rt). As a consequence, the agents’ public log-likelihood ratios (rt) evolve as
follows:

rt+1 = rt +Dg(rt) if at = g, (3)

rt+1 = rt +Db(rt) if at = b, (4)
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where

Dg(r) := log
1− Fg(−r)

1− Fb(−r)
and Db(r) := log

Fg(−r)

Fb(−r)
.

Note that Dg always takes positive values and Db always takes negative values as Fg

first-order stochastically dominates Fb.

Overturning Principle and Stationarity. One important property held by the agent’s
public belief is known as the overturning principle (Sørensen, 1996; Smith and Sørensen,
2000), which asserts that a single action switch is sufficient to change the verdict of πt.

Lemma 2 (Overturning Principle). For each agent t, if at = g, then πt+1 ≥ 1/2. Simi-
larly, if at = b, then πt+1 ≤ 1/2.

Another important property held by πt is stationarity—the value of πt captures all
past information about the payoff-relevant state, independent of time. This holds in
our model because, regardless of the informativeness of the source, agents always update
their public log-likelihood ratios according to either (3) or (4). We further write Pω̃,θ̃,π to
denote the conditional probability distribution given the pair of state realizations (ω̃, θ̃)
while highlighting the different values of the prior π.

Lemma 3 (Stationarity). For any fixed sequence (bτ )
k
τ=1 of k actions in {g, b}, any prior

π ∈ (0, 1) and any pair (ω̃, θ̃) ∈ {0, 1} × {g, b}

Pω̃,θ̃[at+1 = b1, . . . , at+k = bk|πt = π] = Pω̃,θ̃,π[a1 = b1, . . . , ak = bk].

This lemma states that regardless of the source’s informativeness, if agent t’s public
belief is equal to π, then the probability of observing a sequence (b1, . . . , bk) of actions
of length k is the same as observing this sequence starting from time 1, given that the
agents’ prior on the payoff-relevant state is π.

6.2. Immediate Agreement. In our model, since the agent’s public belief πt evolves as
in the standard model, it remains a martingale when the source is informative. However,
when the source is uninformative, πt ceases to be a martingale under the measure P0.
Therefore, we need to employ a different analytical approach to understand what ensures
asymptotic learning of informativeness.16 To do so, we focus on the event {a1 = a2 =

. . . = a} in which all agents immediately reach a consensus on some action a ∈ {g, b}.
We denote such an event by {ā = a} and refer to it as immediate agreement on action
a. Note that conditioned on this event, the process of public log-likelihood ratios (rt) is
deterministic and evolves according to either (3) or (4).

The following lemma shows that conditioned on an informative source, immediate
agreement on the wrong action is impossible, whereas immediate agreement on the correct
16A similar approach can be found in Arieli, Babichenko, Müller, Pourbabaee, and Tamuz (2023), where
the agent’s public belief also ceases to be a martingale under the correct measure because overconfident
agents have misspecified beliefs.
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action is possible, at least for some prior. For brevity, we state this result only for the
case where θ = g. By symmetry, analogous statements hold for θ = b.

Lemma 4. Conditioned on ω = 1 and θ = g, the following two conditions hold:
(i) Immediate agreement on action b is impossible.
(ii) Immediate agreement on action g is possible for some prior π ∈ (0, 1).

The first part of Lemma 4 holds since, as mentioned before, conditioned on an infor-
mative source, all but finitely many agents take the correct action. This immediately
implies that agents cannot reach a consensus on the wrong action from the outset. Like-
wise, the second part of Lemma 4 holds because if agents eventually reach a consensus
on the correct action, by stationarity, they can also do so immediately at least for some
prior.17

Next, we focus on the immediate agreement event conditioned on an uninformative
source. Recall that in Proposition 1, we establish the relationship between learning
about informativeness and perpetual disagreement. Building on this, we now characterize
asymptotic learning of informativeness in terms of immediate agreement, which is a crucial
step in proving our main result.

Proposition 4. Asymptotic learning of informativeness holds if and only if conditioned
on ω = 0, immediate agreement on any action is impossible.

This proposition states that achieving asymptotic learning of informativeness is equiv-
alent to the absence of immediate agreement starting from a uniform prior given an
uninformative source. The proof of Proposition 4 utilizes the idea that the agent’s be-
lief updating process is eventually monotonic—a technical property that we establish in
Lemma 6 in the appendix. This property ensures that if immediate agreement is im-
possible for some prior, e.g., the uniform prior, it becomes impossible for all prior. By
applying stationarity, this implies that agents cannot reach a consensus on any actions
for any prior. Consequently, perpetual disagreement occurs with probability one, and
it follows from Proposition 1 that this is equivalent to achieving asymptotic learning of
informativeness.

Therefore, we have reduced the problem of learning about informativeness to deter-
mining the possibility of immediate agreement conditioned on an uninformative source,
which is much easier to analyze. Specifically, conditioned on the event {ā = g}, let rgt
denote the deterministic process of rt based on (3). Recall that agent t chooses at = g

if ℓt ≥ −rt and at = b otherwise. Consequently, the probability of {ā = g} is equal to
the probability that ℓt ≥ −rgt for all t ≥ 1. Moreover, conditioned on an uninformative
source, since private signals are i.i.d., the corresponding private log-likelihood ratios are

17In fact, part (ii) of Lemma 4 holds not only for some prior but also for any prior. This can be seen
by applying a similar argument used in the proof of Lemma 7 in the appendix. We omit the stronger
statement here, as it is not required to prove our main result.
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also i.i.d. Thus, conditioned on ω = 0, the probability of immediate agreement on action
g is

P0[ā = g] =
∞∏
t=1

(1− F0(−rgt )).

To determine whether the above probability is positive or zero, by a standard approxi-
mation argument, it is equivalent to examining whether the sum of the probabilities of
the following events is finite or infinite:

P0[ā = g] > 0 (= 0) ⇔
∞∑
t=1

F0(−rgt ) < ∞ (= ∞). (5)

By symmetry of the model, we also have

P0[ā = b] > 0 (= 0) ⇔
∞∑
t=1

(
1− F0(r

g
t )
)
< ∞ (= ∞). (6)

In summary, asymptotic learning of informativeness holds if and only if conditioned on
the source being uninformative, the probability of generating extreme signals decreases
slowly enough so that both sums in (5) and (6) are infinite. As we discuss below, for
uninformative signals with fatter tails, these sums diverge, and for signals with thinner
tails, at least one of these sums converges.

6.3. Proof Sketch of Theorem 1. We conclude this section by providing a sketch of
the proof of Theorem 1. On the one hand, by part (i) of Lemma 4, the probability of
generating extreme signals that match the payoff-relevant state decreases relatively slowly
under informative signals. Hence, if the source is uninformative and generates signals with
fatter tails, this probability declines even more slowly. Consequently, both the sums in
(5) and (6) are infinite, which means that no immediate agreement is possible. Thus, by
Proposition 4, asymptotic learning of informativeness holds. On the other hand, by part
(ii) of Lemma 4, the probability of generating extreme signals that mismatch the state
decreases relatively fast under informative signals. Hence, if the source is uninformative
and generates signals with thinner tails, this probability decreases even more rapidly, at
least for some type of extreme signals. Consequently, either the sum in (5) or the sum in
(6) (or both) is finite, which means that immediate agreement on some action is possible.
Hence, by Proposition 4, asymptotic learning of informativeness fails.

7. Non-Uniform Prior

So far, we have focused on the situation in which agents possess a uniform prior over
the payoff-relevant state, leading them to act as if all signals are informative (Lemma
1). As a result, agents always respond to their private signals, and this responsiveness
turns out to be essential for an outside observer aiming to infer the source’s informa-
tiveness. Intuitively, if agents have a non-uniform prior, those who learn that the source
is uninformative should stop responding to their private signals—since they recognize
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that these signals contain no information—and instead choose the action favored by their
prior; however, as seen before, action consensus under an uninformative source hinders
the outside observer’s ability to learn the source’s informativeness, and thus, asymptotic
learning of informativeness should not hold. We formalize this intuition in the following
proposition.

Proposition 5. Asymptotic learning of informativeness fails whenever the prior on the
payoff-relevant state θ is non-uniform.

Thus, when agents have a non-uniform prior—even if it is weak and close to indiffer-
ence—no signal structure can guarantee asymptotic learning of informativeness. Again,
the proof of this proposition uses ideas similar to those in Proposition 1. We refer to the
action favored by the prior as the default action. Suppose to the contrary that asymptotic
learning of informativeness holds. In that case, when the source is uninformative, agents
will eventually learn this and choose the default action. However, when the source is
informative, agents will also take the default action with positive probability, since it is
the correct action in some states. But this contradicts the hypothesis that the outside
observer’s belief about the source’s informativeness almost surely converges to the truth,
and thus we conclude that asymptotic learning of informativeness fails.

8. Conclusion

In this paper, we study the sequential social learning problem in the presence of a
potentially uninformative source. We show that achieving asymptotic learning of infor-
mativeness—where an outside observer eventually discerns whether the source is infor-
mative or uninformative—is not guaranteed and depends on the relationship between the
conditional distributions of the private signals. In particular, it hinges on the relative tail
distribution of signals: When uninformative signals have fatter tails than their informa-
tive counterparts, the observer eventually learns the source’s informativeness; conversely,
when they have thinner tails, this learning fails. We also characterize the conditions for
asymptotic learning of informativeness in the canonical case of Gaussian private signals,
where the relative tail thickness is incomparable.

More generally, our analysis suggests that irregular behavior, such as an action switch
(or a disagreement) following a prolonged sequence of identical actions, is the driving
force behind learning about the source’s informativeness. Indeed, contrary to the public-
signal benchmark where asymptotic learning of informativeness is always achieved, if
agents’ signals remain private, an outside observer can only learn that the source is
uninformative by observing agents switching their actions. We show that conditioned on
an uninformative source, when action switches accumulate indefinitely (or disagreements
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persist), the observer eventually learns the informativeness of the source, and vice versa.
We view this characterization as the key mechanism behind our main result.18

We make the symmetry assumption on the informative distributions Fg and Fb for
expositional purposes. Since our notion of relative tail thickness does not require this
symmetry, our main result (Theorem 1) can be easily extended to the non-symmetric
case. A more substantial assumption is that agents, when conditioned on an uninforma-
tive source, are indifferent between both actions. As shown in Section 7, relaxing this
assumption leads to the failure of asymptotic learning of informativeness. Nevertheless,
it seems reasonable to conjecture that, when the prior is very close to uniform, an outside
observer would almost learn the source’s informativeness. Indeed, for a sufficiently weak
non-uniform prior, the likelihood of observing the same action history should closely re-
semble that under a uniform prior. It would be interesting to understand the conditions
under which learning about informativeness almost holds—not almost surely converging
to the truth but close enough to the truth—suggesting an alternative notion of asymptotic
learning.

A limitation of our results is that they apply only asymptotically. Our numerical sim-
ulations suggest that in the case of uninformative Gaussian signals with fatter tails, the
asymptotics can already kick in relatively early in the process. Thus, it would also be
interesting to understand the speed at which an outside observer learns about the infor-
mativeness of the source. Another promising direction for future research is to explore
varying degrees of informativeness, beyond the extreme cases considered in this paper.
For example, instead of assuming the source is either informative or completely unin-
formative, one could consider weakly or strongly informative sources and ask whether
learning about the source’s informativeness can still be achieved. We conjecture that our
current notion of asymptotic learning would fail in this case, as the “perpetual disagree-
ment” argument would not hold, given that a weakly informative source with unbounded
signals would still lead to action convergence. However, it seems plausible that if the
frequency of action switches differs significantly across different informative sources, the
observer could almost learn to distinguish between them.19 We leave these interesting
questions for future research.

18In the context of scientific paradigms, this mechanism is reminiscent of Kuhn (1962)’s idea that the
accumulation of anomalies may trigger scientific revolutions and paradigm shifts. See Ba (2022) for a
study on the rationale behind the persistence of a misspecified model, e.g., a wrong scientific paradigm.
19For example, one way to generate different frequencies of action switches is to allow multiple draws of
the payoff-relevant state. We conjecture that this would provide more information to the outside observer,
potentially speeding up learning. This is because, compared to an uninformative source, agents’ actions
are more likely to change under an informative source, as they are more likely to receive opposing signals
when the payoff-relevant state changes.
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Appendix A. Proofs

Proof of Lemma 1. Recall that in equilibrium, each agent t chooses the action that is
most likely to match the state θ conditioned on the available information (Ht, st). By
Bayes’ rule, the relative likelihood between the good state and the bad state for agent t

is
P[θ = g|Ht, st]

P[θ = b|Ht, st]
=

∑
ω̃∈{0,1} Pω̃[θ = g|Ht, st] · P[ω = ω̃|Ht, st]∑
ω̃∈{0,1} Pω̃[θ = b|Ht, st] · P[ω = ω̃|Ht, st]

.

Note that P0[θ = g|Ht, st] = P0[θ = g] and P0[θ = b|Ht, st] = P0[θ = b] as conditioned
on ω = 0, neither the history Ht nor the signal st contains any information about the
payoff-relevant state θ. Since the states ω and θ are independent of each other and the
prior on θ is uniform, P0[θ = g|Ht, st] = P0[θ = b|Ht, st] = 1/2. Thus, it follows from the
above equation that

P[θ = g|Ht, st]

P[θ = b|Ht, st]
≥ 1 ⇔ P1[θ = g|Ht, st]

P1[θ = b|Ht, st]
≥ 1.

That is, in equilibrium, each agent chooses the most likely action conditioned on the
available information and the source being informative. □
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Proof of Lemma 2. For any t ≥ 1, one has that

πt+1 = E1[1(θ = g)|Ht+1] = E1[E1[1(θ = g)|Ht, st]|Ht+1]],

where the second equality follows from the law of the iterated expectation. Thus, if
at = g, by Lemma 1, P1[θ = g|Ht, st] ≥ P1[θ = b|Ht, st]. It follows from the above
equation that πt+1 ≥ 1 − πt+1, which implies that πt+1 ≥ 1/2. The case where at = b

implies that πt+1 ≤ 1/2 follows from a symmetric argument. □

The following simple claim will be useful in proving Proposition 1. It employs an idea
similar to the no introspection principle in Sørensen (1996). Recall that qt = P[ω = 1|Ht]

is the belief that an outside observer assigns to the source being informative based on
the history of actions from time 1 to t− 1 and γ = P[ω = 1] ∈ (0, 1) is the prior that the
source is informative.

Claim 1. For any a ∈ (0, 1/2) and any b ∈ (1/2, 1),

P0[qt = q̃] ≤ 1− a

a

γ

1− γ
· P1[qt = q̃], for all q̃ ∈ [a, 1/2];

P0[qt = q̃] ≥ 1− b

b

γ

1− γ
· P1[qt = q̃], for all q̃ ∈ [1/2, b].

Proof. Fix a prior γ ∈ (0, 1). For any q̃ ∈ (0, 1), let H̃t be a history of actions such that
the associated belief qt is equal to q̃. By the law of total expectation,

P[ω = 1|qt = q̃] = E[E[1(ω = 1)|H̃t]|qt = q̃] = E[q̃|qt = q̃] = q̃.

It follows from Bayes’ rule that

P0[qt = q̃]

P1[qt = q̃]
=

P[ω = 0|qt = q̃]

P[ω = 1|qt = q̃]
· P[ω = 1]

P[ω = 0]
=

1− q̃

q̃

γ

1− γ
.

Since for any a ∈ (0, 1/2) and any q̃ ∈ [a, 1/2], 1 ≤ 1−q̃
q̃

≤ 1−a
a

, it thus follows from the
above equation that

P0[qt = q̃] =
1− q̃

q̃

γ

1− γ
· P1[qt = q̃] ≤ 1− a

a

γ

1− γ
· P1[qt = q̃].

The second inequality follows from an identical argument. □

In the following proofs for Proposition 1, 2 and 3, we use extensively the idea of
an outside observer, say observer x, who observes everyone’s actions. The information
available to him at time t is thus Ht = (a1, . . . , at−1) and at time infinity is H∞ = ∪tHt.
He gets a utility of one if his guess about ω is correct and zero otherwise. Furthermore,
we denote by q∞ := P[ω = 1|H∞] the belief that he has at time infinity about the event
ω = 1. Similarly, we denote by p∞ := P[θ = g|H∞] the belief that he has at time infinity
about the event θ = g.

Proof of Proposition 1. We first show the if direction. Recall that S =
∑∞

t=1 1(at ̸=
at+1) and suppose that P0[S = ∞] = 1. Denote by axt the guess that the outside observer
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x would make to maximize his probability of guessing ω correctly at time t. Fix a large
positive integer k ∈ N. Let At(k) denote the event that there have been at least k action
switches before time t and denote its complementary event by Ac

t(k).
Consider the following strategy ãx∞(k) for x at time infinity: ãx∞(k) = 0 if A∞(k)

occurs and ãx∞(k) = 1 otherwise. That is, the observer would guess 0 if there are at least
k action switches at time infinity and guess 1 otherwise. The expected payoff of x under
this strategy is

P[ãx∞(k) = ω] = P0[A∞(k)] · P[ω = 0] + P1[A
c
∞(k)] · P[ω = 1]. (A.1)

Since conditioned on ω = 1, agents eventually reach a consensus almost surely, it follows
that for all k large enough,

P1[A
c
∞(k)] = 1. (A.2)

By assumption, P0[S = ∞] = 1, which implies that P0[A∞(k)] = 1 for all k. Thus, it
follows from (A.1) and (A.2) that for all k large enough, P[ãx∞(k) = ω] = 1. In other
words, for all k large enough, the strategy ãx∞(k) achieves the maximal payoff for x.

Meanwhile, note that the optimal strategy for x at time infinity is to make a guess that
he believes is most likely, given the information H∞: ax∞ = 1 if q∞ ≥ 1/2 and ax∞ = 0

otherwise. Since P[ãx∞(k) = ω] = 1 for all k large enough, the optimal strategy ax∞ must
also achieve the maximal payoff of one:

1 = P[ax∞ = ω] = P1[q∞ ≥ 1/2] · P[ω = 1] + P0[q∞ < 1/2] · P[ω = 0]. (A.3)

It follows from (A.3) that P0[q∞ < 1/2] = P1[q∞ ≥ 1/2] = 1. It remains to show that
P0[q∞ = 0] = 1 and P1[q∞ = 1] = 1. To this end, first notice that P0[q∞ < 1/2] = 1

implies that P0[q∞ ≥ 1/2] = 0. Thus, by Claim 1, it further implies that for any
b ∈ (1/2, 1) and all q̃ ∈ [1/2, b], P1[q∞ = q̃] = 0. Consequently, it follows from P1[q∞ ≥
1/2] = 1 that P1[q∞ = 1] = 1. The case that P0[q∞ = 0] = 1 follows from an identical
argument. Together, we conclude that asymptotic learning of informativeness holds.

Next, we show the only-if direction. Suppose by contraposition that P0[S < ∞] > 0.
Again, since conditioned on ω = 1, agents eventually reach a consensus on the correct
action, this implies that P1[S < ∞] = 1. Thus, there exists a history of actions at time
infinity H̃∞ that is possible under both probability measures P0 and P1: P0[H̃∞] > 0 and
P1[H̃∞] > 0. It follows from Bayes’ rule that P[ω = 1|H̃∞] < 1 and P[ω = 0|H̃∞] < 1.

Assume without loss of generality that under this history H̃∞, the corresponding belief
q̃∞ ≥ 1/2. Therefore, given H̃∞, the observer x would guess ax∞ = 1. As a consequence,
the probability of x guessing correctly about ω is strictly less than one:

P[ax∞ = ω] = P[ax∞ = ω, H̃∞] + P[ax∞ = ω, H̃c
∞]

= P[ω = 1|H̃∞] · P[H̃∞] + P[ax∞ = ω, H̃c
∞]

< P[H̃∞] + P[H̃c
∞] = 1.
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This implies that asymptotic learning of informativeness fails since otherwise, by defini-
tion P[ax∞ = ω] = 1, which is in contradiction with the above strict inequality. □

The following equation will be useful in proving Proposition 2, 3, and later in Propo-
sition 5. Recall that q∞ and p∞ are the beliefs of the observer x assigned to the events
ω = 1 and θ = g at time infinity, respectively. By the law of total probability,

p∞ = P1[θ = g|H∞] · q∞ + P0[θ = g|H∞] · (1− q∞) (A.4)

= π∞ · q∞ +
1

2
· (1− q∞). (A.5)

where π∞ = P1[θ = g|H∞], and the second equality follows from the fact that, conditioned
on ω = 0, no action contains any information about θ and the prior on θ is uniform.

Proof of Proposition 2. Since agents always act as if signals are informative (Lemma
1), the agent’s public belief πt = P1[θ = g|Ht] remains a martingale under the measure
P1. Using a standard martingale convergence argument with unbounded signals (Smith
and Sørensen, 2000), we have that (i) conditioned on ω = 1 and θ = g, π∞ = 1 almost
surely and (ii) conditioned on ω = 1 and θ = b, π∞ = 0 almost surely.

Suppose that conditioned on ω = 1, complete learning holds. That is, (i) conditioned on
ω = 1 and θ = g, p∞ = 1 almost surely and (ii) conditioned on ω = 1 and θ = b, p∞ = 0

almost surely. It follows from (A.5) that conditioned on ω = 1, q∞ = 1 almost surely so
that asymptotic learning of informativeness holds. Conversely, suppose that asymptotic
learning of informativeness holds. By definition, conditioned on ω = 1, q∞ = 1 almost
surely. It then follows from (A.5) that conditioned on ω = 1, p∞ = π∞ almost surely,
and thus complete learning holds. □

Proof of Proposition 3. The only-if direction is straightforward: Suppose asymptotic
learning of informativeness holds. By definition, conditioned on ω = 0, q∞ = 0 almost
surely, and thus it follows from (A.5) that p∞ = 1/2 almost surely.

Now, we prove the if direction. Suppose by contrapositive that asymptotic learning
of informativeness fails. By Proposition 1, conditioned on ω = 0, there exists a history
H̃∞ that is possible at time infinity in which agents eventually reach a consensus on
some action. Since such history is also possible conditioned on ω = 1, the corresponding
belief of an outside observer q̃∞ ∈ (0, 1).20 Furthermore, note that depending on the
action to which the history H̃∞ converges, the corresponding public belief of the agent
π̃∞ takes values in {0, 1}. Hence, by (A.5), the event {p∞ ̸= 1/2} occurs with positive
probability. □

Proof of Lemma 4. The proof idea is similar to the proof of Lemma 10 in Arieli,
Babichenko, Müller, Pourbabaee, and Tamuz (2023). Recall that we use P1,g to de-
note the conditional probability distribution given ω = 1 and θ = g and we use P1,g,π to

20Note that conditioned on ω = 0, q∞ has support ⊆ [0, 1) as P[ω = 0|q∞ = 1] = 0.
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denote the same conditional probability distribution while emphasizing the prior value.
Since conditioned on ω = 1, correct herding holds, this means that P1,g[limt at = g] = 1.
As a consequence, part (i) follows directly from the fact that the events {ā = b} and
{limt at = g} are disjoint, and thus P1,g[ā = b] = 0.

For part (ii), let τ < ∞ denote the last random time at which the agent chooses the
wrong action b. It is well-defined as correct herding holds. Hence, 1 = P1,g[limt at =

g] =
∑∞

k=1 P1,g[τ = k]. By the overturning principle (Lemma 2), aτ = b implies that
πτ+1 ≤ 1/2. As a consequence,

1 =
∞∑
k=1

P1,g[τ = k] =
∞∑
k=1

P1,g[ak+1 = ak+2 = . . . = g, πk+1 ≤ 1/2]

=
∞∑
k=1

E1,g

[
P1,g[ak+1 = ak+2 = . . . = g, πk+1 ≤ 1/2 | πk+1]

]
=

∞∑
k=1

E1,g

[
1(πk+1 ≤ 1/2) · P1,g[ak+1 = ak+2 = . . . = g | πk+1]

]
=

∞∑
k=1

E1,g

[
1(πk+1 ≤ 1/2) · P1,g,πk+1

[ā = g]
]
,

where the second equality follows from the law of total expectation, and the last equality
follows from the stationarity property (Lemma 3). Suppose that for all prior π ∈ (0, 1),
P1,g,π[ā = g] = 0. This implies that the above equation equals zero, a contradiction. □

A.1. Proof of Theorem 1. In this section, we prove Proposition 4 and Theorem 1.
To prove Proposition 4, we will first prove the following proposition (Proposition 6).
Together with Proposition 1, they jointly imply Proposition 4. The proof of Theorem 1
is presented at the end of this section. We write P0,π to denote the conditional probability
distribution given ω = 0 while highlighting the value of the prior π on θ.21

Proposition 6. The following are equivalent.
(i) For any action a ∈ {g, b}, P0,π[ā = a] = 0 for all prior π ∈ (0, 1).
(ii) P0[S = ∞] = 1.
(iii) For any action a ∈ {g, b}, P0,π[ā = a] = 0 for some prior π ∈ (0, 1).

To prove this proposition, we first establish some preliminary results on the process of
the agents’ public log-likelihood ratios conditioned on the event of immediate agreement.
These results lead to Lemma 7, a crucial part in establishing the equivalence between
no immediate agreement and perpetual disagreement conditioned on an uninformative
source. We present the proof of Proposition 6 towards the end of this section.

Preliminaries. Recall that conditioned on {ā = g}, the process of the agent’s public log-
likelihood ratio rt evolves deterministically according to (3), which we denote by rgt . Let

21We continue to omit the prior π when it is uniform.
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the corresponding updating function be

ϕ(x) := x+Dg(x).

That is, rgt+1 = ϕ(rgt ) for all t ≥ 1. Since the entire sequence (rgt ) is determined once
its initial value rg1 is specified, we denote the value of rgt with an initial value rg1 = r by
rgt (r). We can thus write rgt (r) = ϕt−1(r) for all t ≥ 1, where ϕt is its t-th composition
and ϕ0(r) = r.

We remind the readers of two standard properties of the sequence (rgt ), as summarized
in the following lemma. The first part of this lemma states that (rgt ) tends to infinity as
t tends to infinity, and the second part shows that it takes only some bounded time for
the sequence (rgt ) to reach any positive value.

Lemma 5 (The Long-Run and Short-Run Behaviors of rgt ).
(i) limt→∞ rgt = ∞.
(ii) For any r̄ ≥ 0, there exists t0 such that rgt0(r) ≥ r̄ for all r ≥ 0.

Proof. See Lemma 6 and Lemma 12 in Rosenberg and Vieille (2019). □

Note that although the sequence (rgt ) eventually approaches infinity, it may not do
so monotonically without additional assumptions on the distributions Fg and Fb.22 The
next lemma shows that, under some mild technical assumptions on the left tail of Fb, the
function ϕ(x) eventually increases monotonically.

Lemma 6 (Eventual Monotonicity). Suppose that Fb has a differentiable left tail and
its probability density function fb satisfies the condition that, for all x large enough,
fb(−x) < 1. Then, ϕ(x) := x+Dg(x) increases monotonically for all x large enough.

Proof. By assumption, we can find a constant ρ < 1 such that for all x large enough,
fb(−x) ≤ ρ. By definition, Dg(x) = log 1−Fg(−x)

1−Fb(−x)
. Taking the derivative of Dg,

D′
g(x) =

fg(−x)

1− Fg(−x)
− fb(−x)

1− Fb(−x)
.

Observe that the log-likelihood ratio of the agent’s private log-likelihood ratio ℓt is the
log-likelihood ratio itself (see, e.g., Chamley (2004)):

log
dFg

dFb

(x) = x.

It follows that

−D′
g(x) = fb(−x)

( 1

1− Fb(−x)
− e−x

1− Fg(−x)

)
≤ fb(−x)

1− Fb(−x)
.

22In the case of binary states and actions, Herrera and Hörner (2012) show that the property of increasing
hazard ratio is equivalent to the monotonicity of this updating function. See Smith, Sørensen, and Tian
(2021) for a general treatment.
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Fix some ε > 0 small enough so that (1 + ε)ρ ≤ 1. It follows from the above inequality
that there exists some x large enough such that −D′

g(x) ≤ (1 + ε)fb(−x). Furthermore,
for all x′ ≥ x,

Dg(x) = Dg(x
′)−

∫ x′

x

D′
g(y)dy

≤ Dg(x
′) + (1 + ε)

∫ x′

x

fb(−x)dx

= Dg(x
′)− (1 + ε)(Fb(−x′)− Fb(−x)).

Rearranging the above equation,

Dg(x)−Dg(x
′) ≤ (1 + ε)(Fb(−x)− Fb(−x′))

≤ (1 + ε)ρ(x′ − x),

where the second last inequality follows from the fact that fb(−x) ≤ ρ < 1. Since
(1+ε)ρ ≤ 1, the above inequality implies that there exists some x large enough such that
Dg(x) + x ≤ Dg(x

′) + x′ for all x′ ≥ x. That is, ϕ(x) eventually increases monotonically.
□

Given these lemmas, we are ready to prove the following result. It shows that condi-
tioned on an uninformative source, the possibility of immediate agreement is independent
of the prior belief.

Lemma 7. For any action a ∈ {g, b}, the following statements are equivalent:
(i) P0,π[ā = a] > 0, for some prior π ∈ (0, 1);
(ii) P0,π[ā = a] > 0, for all prior π ∈ (0, 1).

Proof. The second implication, namely, (ii) ⇒ (i) is immediate. We will show the first
implication, (i) ⇒ (ii). Fix some prior π̃ ∈ (0, 1) such that P0,π̃[ā = g] > 0 and let
r̃ = log π̃

1−π̃
. Since rgt (r̃) is a deterministic process, the event {ā = g} initiated at the

prior π1 = π̃ is equivalent to the event {ℓt ≥ −rgt (r̃),∀t ≥ 1}. Conditioned on ω = 0,
since signals are i.i.d., so are the agents’ private log-likelihood ratios. Thus, we have

P0,π̃[ā = g] =
∞∏
t=1

(1− F0(−rgt (r̃)). (A.6)

As a consequence, P0,π̃[ā = g] > 0 if and only if there exists M < ∞ such that

−
∞∑
t=1

log
(
1− F0(−rgt (r̃))

)
< M.

For two sequences (at) and (bt), we write at ≈ bt if limt→∞(at/bt) = 1. Since rgt (r̃) → ∞
(this follows from part (i) of Lemma 5), log

(
1− F0(−rgt (r̃))

)
≈ −F0(−rgt (r̃)). Thus, the
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above sum is finite if and only if
∞∑
t=1

F0(−rgt (r̃)) < M. (A.7)

By the overturning principle (Lemma 2), it suffices to show that (A.7) implies that
∞∑
t=1

F0(−rgt (r)) < M, for any r ≥ 0.

By the eventual monotonicity of ϕ (Lemma 6) and the fact that rgt (r̃) → ∞, we can find
a large enough t̄ such that rgt̄ (r̃) := r̄ ≥ 0 and ϕ(r) ≥ ϕ(r̄) for all r ≥ r̄. By part (ii)
of Lemma 5, there exists t0 ∈ N such that rgt0(r) ≥ r̄ for all r ≥ 0. Since above r̄, ϕ is
monotonically increasing, one has ϕ(rgt0(r)) ≥ ϕ(r̄) for any r ≥ 0. Consequently, for all
τ ≥ 1, rgτ+t0(r) = ϕτ (rgt0(r)) ≥ ϕτ (r̄) = rgτ+1(r̄). Since rgτ+1(r̄) = rgτ+1(r

g
t̄ (r̃)) = rgτ+t̄(r̃), it

follows that
F0(−rgτ+t0(r)) ≤ F0(−rgτ+t̄(r̃)).

Thus, it follows from (A.7) that for any r ≥ 0,
∑∞

t=1 F0(−rgt (r)) < ∞, as required. The
case for action b follows from a symmetric argument. □

Now, we are ready to prove Proposition 6.

Proof of Proposition 6. We show that (i) ⇒ (ii), (ii) ⇒ (iii), and (iii) ⇒ (i). To
show the first implication, we prove the contrapositive statement. Suppose that P0[S <

∞] > 0. This implies that there exists a sequence of action realizations (b1, b2, . . . , bk−1, bk =

. . . = a) for some action a ∈ {b, g} such that

P0[at = bt,∀t ≥ 1] > 0.

By stationarity, there exists some π′ ∈ (0, 1) such that

P0,π′ [ā = a] > 0,

which contradicts (i).
To show the second implication, suppose towards a contradiction that there exists some

action a ∈ {g, b} such that P0,π[ā = a] > 0 for all prior π ∈ (0, 1). In particular, it holds
for the uniform prior. Since the event {ā = a} is contained in the event {S < ∞},

0 < P0[ā = a] ≤ P0[S < ∞].

This implies that P0[S = ∞] < 1, a contradiction to (ii).
Finally, we show the last implication by contraposition. Suppose that there exists some

a ∈ {g, b} such that P0,π[ā = a] > 0 for some prior π ∈ (0, 1). By Lemma 7, it also holds
for all prior π ∈ (0, 1), which is a contradiction to (iii). This concludes the proof of
Proposition 6. □
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Proof of Proposition 4. By the equivalence between (ii) and (iii) in Proposition 6 and
Proposition 1, we have shown Proposition 4. □

Given Proposition 4, we are now ready to prove our main result.

Proof of Theorem 1. By part (i) of Lemma 4, P1,b[ā = g] = 0 and P1,g[ā = b] = 0.
Following a similar argument that led to (A.6), one has

0 = P1,b[ā = g] =
∞∏
t=1

(1− Fb(−rgt )).

Taking the logarithm on both sides, the above equation is equivalent to −
∑∞

t=1 log(1 −
Fb(−rgt )) = ∞. Since rgt → ∞, log(1 − Fb(−rgt )) ≈ −Fb(−rgt ) and the previous sum is
infinite if and only if

∞∑
t=1

Fb(−rgt ) = ∞. (A.8)

Similarly, we have that P1,g[ā = b] = 0 if and only if
∑∞

t=1(1 − Fg(−rbt )) = ∞, where rbt
denotes the deterministic process of rt conditioned on the event {ā = b}. By symmetry,
rbt = −rgt for all t ≥ 1. Hence, P1,g[ā = b] = 0 if and only if

∞∑
t=1

(1− Fg(r
g
t )) = ∞, (A.9)

Suppose that the uninformative signals have fatter tails than the informative signals.
By definition, there exists ε > 0 such that for all x large enough, F0(−x) ≥ ε · Fb(−x)

and 1− F0(x) ≥ ε · (1− Fg(x)). It then follows from (A.8) and (A.9) that
∞∑
t=1

F0(−rgt ) = ∞ and
∞∑
t=1

(1− F0(r
g
t )) = ∞.

Using the same logic we used to deduce (A.8) and (A.9), having these two divergent sums
is equivalent to P0[ā = g] = 0 and P0[ā = b] = 0. Thus, by Proposition 4, asymptotic
learning of informativeness holds.

By part (ii) of Lemma 4, there exist π, π′ ∈ (0, 1) such that P1,g,π[ā = g] > 0 and
P1,b,π′ [ā = b] > 0. Let r = log π

1−π
and r′ = log π′

1−π′ . Following a similar argument that
led to (A.7), these are equivalent to

∞∑
t=1

Fg(−rgt (r)) < ∞ and
∞∑
t=1

(1− Fb(r
g
t (r

′))) < ∞.

Now, suppose that the uninformative signals have thinner tails than the informative
signals. By definition, there exists ε > 0 such that either (i) F0(−x) ≤ (1/ε) · Fg(−x)

for all x large enough, or (ii) 1 − F0(x) ≤ (1/ε) · (1 − Fb(x)) for all x large enough.
It then follows from the above inequalities that either (i)

∑∞
t=1 F0(−rgt (r)) < ∞ or (ii)∑∞

t=1(1− F0(r
g
t (r

′))). Equivalently, we have either (i) P0,π[ā = g] > 0 for some π ∈ (0, 1)

or (ii) P0,π′ [ā = b] > 0 for some π′ ∈ (0, 1). By Lemma 7, these also hold for all prior
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π, π′ ∈ (0, 1), including the uniform prior. So we have either (i) P0[ā = g] > 0 or (ii)
P0[ā = b] > 0. Thus, by Proposition 4, asymptotic learning of informativeness fails. □

A.2. Gaussian Private Signals. In this section, we consider the canonical environment
in which all signal distributions µg, µb and µ0 are normal. In particular, the distributions
µg and µb share the same variance σ2 and have mean +1 and −1, respectively. Meanwhile,
µ0 has mean m0 ∈ (−1, 1) and variance τ 2. Note that in this case, the agent’s private
log-likelihood ratio induced by a signal st is

ℓt = log
fg(st)

fb(st)
=

2

σ2
st. (A.10)

Since ℓt is proportional to st, the distributions Fθ and F0 are also normal, with a variance
of 4/σ2 and 4τ 2/σ4, respectively.

We first consider the case where τ ̸= σ. In this case, the relative tail thickness between
the uninformative and informative signals is solely determined by their variances, as
shown by the following lemma.

Lemma 8. Suppose F and G are two Gaussian cumulative distribution functions with
means µ1 and µ2 and variances σ2

1 and σ2
2, respectively. If σ1 > σ2, then F has fatter

tails than G. Meanwhile, G has thinner tails than F .

Proof. Let f and g denote the probability density functions of F and G. Their ratio
evaluated at x ∈ R is

f(x)

g(x)
=

σ2

σ1

exp
(
(
1

σ2
2

− 1

σ2
1

)
x2

2
+ (

µ1

σ2
1

− µ2

σ2
2

)x+
1

2
(
µ2
2

σ2
2

− µ2
1

σ2
1

)
)
.

Suppose σ1 > σ2. It follows from the above equation that limx→∞
f(−x)
g(−x)

= ∞ and
limx→∞

f(x)
g(x)

= ∞. This clearly implies that F (−x) ≥ G(−x) and 1 − F (x) ≥ 1 − G(x)

for all x large enough. By Definition 2, F has fatter tails than G, and conversely, G has
thinner tails than F . □

We henceforth focus on the case where τ = σ. When all private signals are Gauss-
ian, Hann-Caruthers, Martynov, and Tamuz (2018) show that one can approximate the
sequence rgt by (2

√
2/σ) ·

√
log t for all t large enough (see their Theorem 4):

lim
t→∞

rgt
(2
√
2/σ) ·

√
log t

= 1. (A.11)

Given this approximation and Proposition 4, we are ready to prove Theorem 2.

Proof of Theorem 2. In this proof we use the Landau notation, so that O(g(t)) stands
for some function f : N → R such that there exists a positive M ∈ R and t0 ∈ N such
that |f(t)| ≤ M · g(t) for all t ≥ t0.

Note that by (A.10), we can write

F0(−rgt ) = P0[ℓt ≤ −rgt ] = P0[st ≤ −(σ2/2) · rgt ].
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By (A.11), we have that for all t large enough,

F0(−rgt ) = P0[st ≤ −σ
√
2 log t] =: µ0(−σ

√
2 log t),

where µ0 is the CDF of st conditioned on ω = 0. Since µ0 is the normal distribution
with mean m0 ∈ (−1, 1) and variance σ2, observe that µ0(x) = 1

2
erfc(−x−m0

σ
√
2
), where

erfc(x) = 2√
π

∫∞
x

e−t2dt is the complementary error function.
Applying a standard asymptotic expansion of the complementary error function, i.e.,

erfc(x) = e−x2

x
√
π
+O(e−x2

/x3), we obtain that for all t large enough,

µ0(−σ
√

2 log t) =
e−
(

m0
σ

√
2 log t+

m2
0

2σ2

)
t(
√
π log t+ δ ·m0)

+O(
e−m0

√
2 log t

t(σ
√
2 log t+m0)3

), (A.12)

where δ > 0 is a constant.
Case (i): suppose m0 = 0. Then (A.12) becomes 1

t·
√
π log t

+ O( 1
t·(log t)3/2 ). Since the

series 1
t log t

is divergent and 1
t log t

≤ 1
t
√
log t

for all t ≥ 2, the sum of the first term also
diverges. Hence, the sum of (A.12) diverges, which implies

∑∞
t=1 F0(−rgt ) = ∞. By

the same approximation argument used in the proof of Theorem 1, this is equivalent to
P0[ā = g] = 0. Using an analogous argument, we obtain P0[ā = b] = 0. Together, by
Proposition 4, we conclude that asymptotic learning of informativeness holds.

Case (ii): suppose m0 ̸= 0 and m0 ∈ (−1, 1). Let c = m0

√
2

σ
. By the change of variable

x =
√
log t, ∫ ∞

2

e−c
√
log t

t
√
log t

dt = 2

∫ ∞

√
log 2

e−cxdx.

If m0 > 0, then c = m0

√
2

σ
> 0. By the integral test, the sum in (A.12) converges, and

thus
∑∞

t=1 F0(−rgt ) < ∞. Again, by the same logic that we use to deduce (A.7), this
is equivalent to P0[ā = g] > 0. If m0 < 0, it follows from a symmetric argument that∑∞

t=1(1 − F0(r
g
t )) < ∞, which is equivalent to P0[ā = b] > 0. In either case, it follows

from Proposition 4 that asymptotic learning of informativeness fails. □

A.3. Non-Uniform Prior. In this section, we prove Proposition 5. We relax the uni-
form prior assumption on θ while maintaining the independence assumption between θ

and ω. Let ad denote the default action that is favored by the non-uniform prior.
Recall that pt = P[θ = g|Ht] is the social belief that θ = g at time t and qt = P[ω = 1|Ht]

is the outside observer’s belief that ω = 1 at time t. Given that the prior on θ is not
uniform, each agent t chooses an action according to (1). It immediately follows that pt

also satisfies the overturning principle (see Lemma 2). The following lemma is useful in
proving Proposition 5.

Lemma 9. Given a non-uniform prior on θ, the following statements hold:
(i) Conditioned on limt→∞ qt = 0 almost surely, actions almost surely converge to ad.
(ii) Conditioned on limt→∞ qt = 1 almost surely, actions almost surely converge to θ.
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Proof. Fix a prior π = P[θ = g] > 1/2, and so ad = g. For part (i), suppose towards
a contradiction that actions do not converge to g almost surely. There are two possible
cases: either limt→∞ at = b, or the actions never converge, i.e., S = ∞. By the overturning
principle, these scenarios imply that either limt→∞ pt = p∞ ≤ 1/2, or p∞ = 1/2. Together
they imply that the event {p∞ ≤ 1/2} occurs with positive probability. Since limt→∞ qt =

q∞ = 0 almost surely, it follows from (A.4) that

p∞ = P0[θ = g|H∞] = π > 1/2 almost surely,

a contradiction to the event {p∞ ≤ 1/2} occurring with positive probability. Hence, we
conclude that limt→∞ at = g almost surely.

For part (ii), consider the case where θ = g. Assume by contradiction, that either
limt→∞ at = b or S = ∞ occurs with positive probability. Again, by the overturning
principle, these imply that the event {p∞ ≤ 1/2} occurs with positive probability. Since
limt→∞ qt = 1 almost surely, it follows from (A.4) that π∞ = p∞ ≤ 1/2 with positive
probability. By a standard martingale convergence argument with unbounded signals
(Smith and Sørensen, 2000), we know that conditioned on θ = g, π∞ = 1 almost surely,
which contradicts to the event {π∞ ≤ 1/2} occurring with positive probability. An
analogous argument applies to the case where θ = b. □

Proof of Proposition 5. Suppose by contradiction that asymptotic learning of infor-
mativeness holds. By definition and Lemma 9, we have that conditioned on ω = 0,
limt at = ad almost surely; similarly, conditioned on ω = 1, limt at = θ almost surely.
However, since P[θ = ad|ω = 1] > 0, there exists a history of actions at time infinity
Hd

∞ in which limt at = ad and such history is possible under both probability measures
P0 and P1. Following a similar argument to that used in the proof of Proposition 1 (for
the only-if direction), this implies that asymptotic learning of informativeness fails, a
contradiction. □
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