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Abstract. We study how fads emerge from social learning in a changing environment.
We consider a simple sequential learning model in which rational agents arrive in order,
each acting only once, and the underlying unknown state is constantly evolving. Each
agent receives a private signal, observes all past actions of others, and chooses an action
to match the current state. Since the state changes over time, cascades cannot last
forever, and actions fluctuate too. We show that in the long run, actions change more
often than the state. This describes many real-life faddish behaviors in which people
often change their actions more frequently than what is necessary.

1. Introduction

The term “fad” describes transient behavior that rises and fades quickly in popularity.
In particular, these fast changes in behavior cannot be explained entirely by changes in
the fundamentals. For example, in macroeconomics, there are boom-and-bust business
cycles that cannot be pinned down by changes in the underlying economy.1 It has been
long documented in finance that price deviation from the asset’s intrinsic values can steam
from speculative bubbles and fads (Camerer, 1989; Aggarwal and Rivoli, 1990). While
the phenomenon of fads is widely observed in many economic activities, the question of
how and why fads emerge has yet to be resolved in the literature. In this paper, we show
how fads can arise from social learning in an ever-changing environment.

The pioneering work in the social learning literature (Banerjee, 1992; Bikhchandani
et al., 1992) (BHW thereafter) shows that under appropriate conditions, information
cascades always occur – this is the event in which the social information swamps agents’
private information so that agents would follow others’ action regardless of their private
signals. However, as discussed in BHW, this long-run cascading outcome is also fragile
to small shocks. For example, the possibility of a one-time change in the underlying
state could cause “seemingly whimsical swings in mass behavior without obvious external
stimulus” for which they to as fads. Inspired by BHW’s original idea, we introduce a
formal definition of fads and study their long-term behavior.
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While BHW present an early idea of fads, they mainly focus on learning in a fixed
environment where fads cannot recur indefinitely. In contrast, the recurrence of fads is
possible in a changing environment, a setting that has recently attracted some attention
in the literature (see, e.g., Dasaratha et al., 2020; Lévy et al., 2022). More importantly,
a model with a changing state allows us to understand whether behavior under observa-
tional learning is more or less volatile than the underlying state. In other words, does
social learning exaggerate the fluctuations in behavior and cause faddish behavior, or
does it have the opposite effect?

To answer this question, we study the canonical model of social learning (i.e., a binary
state with symmetric binary signals) with a slight twist: with a small (and symmetric)
probability, the underlying state switches in every period.2 We focus on the long-term
behavior of agents, who arrive sequentially and learn from observing the past actions
of others as well as their private signals. Each agent acts once and obtains a positive
payoff if her action matches the current state. As the underlying state evolves, the best
action to take also fluctuates. The question we ask is: compared to state changes, how
frequently do actions change? On the one hand, agents sometimes ignore their private
signals because of information cascades, and thus they do not change their actions even
when the state changes. On the other hand, because signals are noisy, agents sometimes
change actions unnecessarily. We say fads emerge if there are more action changes than
state changes, and our main result shows that fads do emerge in the long run. We stress
that in our model, fads arise from rational agents’ desire to match the ever-changing
state instead of any payoff externalities between agents or heuristics or irrationality of
the agents.

More specifically, the slowly evolving state in our model allows cascades to arise,
but they can only be temporary so that agents cannot herd on a single action forever
(Moscarini et al., 1998). Intuitively, older social information is depreciated over time as
it becomes less relevant to the current agent, and eventually, agents will return to utilize
their private signals and change their actions. Nevertheless, the question of how often
agents change their actions compared to state changes remains unclear. At first glance,
one may expect that actions would change less often than the state as temporary cascades
prevent agents from following their private signals and thus reduce the volatility in ac-
tions. The symmetry of binary states also amplifies such an effect: imagine the state has
changed an even number of times, say twice, while agents in a cascade could mistakenly
treat the state as unchanged, so they would have no reason to change their actions.

Perhaps surprisingly, our main result (Theorem 1) shows that even if there are tempo-
rary cascades, actions change more often than the state in the long run. In other words,

2This is known as a simple two-state Markov process. See other studies of social learning in a changing
environment that also consider a Markovian environment, e.g., Moscarini et al. (1998); Hirshleifer and
Welch (2002) and Lévy et al. (2022). Our model is mostly close to Moscarini et al. (1998) except for the
tie-breaking rule. We provide a detailed literature review on these studies next.
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fads emerge in a changing environment even though it is unlikely that the state has
changed at all. For example, consider a private signal that matches the state 80 percent
of the time. On average, when the state changes once every hundred periods, we show
that agents take less than sixty-one periods to change their actions. Thus, the long-term
frequency of action changes must be higher than state changes, resulting in fads. This
relatively high frequency of action changes is also in line with the fragility of fads, where
small shocks to the system could cause rapid shifts in agents’ behavior.3

Our proof strategy behind the emergence of fads is as follows. First, for any fixed signal
precision and probability of state change, there exists a maximum length of any cascade.
As a result, even though the rise of temporary cascades prolongs action inertia, such an
effect on actions is limited by its bounded length. Meanwhile, agents only require one
opposing signal to change their actions whenever they have an opportunity, i.e., whenever
the public belief exits a cascade. We bound the probability of agents changing actions
from below and thus establish an upper bound for the expected time between action
changes. We show that this upper bound is less than the expected time of state changes,
implying that it takes less time on average for actions to change than the state. Finally,
we translate the expected time of changes for both the state and the action into their
long-term relative frequency of changes and conclude that fads emerge in the long run.

1.1. Related Literature. This paper is closely related to a small stream of studies on
social learning in a changing state. As mentioned before, BHW show that a one-time
shock to the state could break the cascade, even though that shock may never be realized.
They provide a numeric example where the probability of an action change is at least 87%
higher than the probability of state change (see their Result 4) which is in line with our
main result. Later, Moscarini et al. (1998) further explore this idea and show that if the
underlying environment is evolving in every period and the state is sufficiently persistent,
an information cascade must arise, but it can only be temporary, i.e., it must end in finite
time. Our work builds on their model but with a different focus. While they focus on
analyzing the short-term behavior of information cascades, e.g., under what conditions
do they end or arise, we ask: in the long run, should one expect more action or state
changes?

Hirshleifer and Welch (2002) also consider a changing environment in their stylized
model (see their §3), but their focus is on examining the effect of memory loss on the
continuity of behavior of a single agent.4 They analyze the equilibrium behavior of a
five-period stylized model and show that in a relatively stable environment, memory loss
causes the agent to exhibit excess action inertia relative to a full-recall regime, whereas

3As discussed in Bikhchandani et al. (1992, 1998), fads are fragile precisely because they are typically
formed based on little information. Thus, different kinds of shocks, such as uncertainty in the underlying
state as in our model or the arrival of a better informed agent, etc., would dislodge the previous trend
and cause drastic behavioral changes.
4The term “memory loss” refers to the case where the agent only recalls past actions but not past signals.
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in a volatile environment, memory loss leads to excess action impulsiveness.5 However,
the authors did not pursue a changing environment when studying the long-term effect
of amnesia. We differ from their study by emphasizing long-term behavior in a changing
environment.

Among a few more recent studies that consider a dynamic state, the efficiency of
learning has been a primary focus of study. For example, Frongillo et al. (2011) consider
a specific dynamic environment in which the underlying state follows a random walk
with non-Bayesian agents who use different linear rules when updating. Their main
result is that the equilibrium weights may be Pareto suboptimal, causing inefficiency in
learning.6 In a similar but more general environment, Dasaratha et al. (2020) show that
having sufficiently diverse network neighbors with different signal distributions improves
learning. Intuitively, having diverse signals allows agents to decipher the most relevant
information from the old and confounded information, thus achieving higher efficiency in
information aggregation.

A more recent study by Lévy et al. (2022) considers a similar setup to ours, focusing
on the implication of a dynamic state on equilibrium welfare. In their model, agents
observe a random subsample drawn from all past behaviors and then decide whether
to acquire private signals that are potentially costly. These model generalizations allow
them to highlight the trade-off between learning efficiency and the need to be responsive
to environmental changes, which reduces equilibrium welfare. In contrast, we assume
that all past actions are observable and that the private signals are free of charge. We
consider this canonical sequential learning model without further complications as our
focus is on comparing the long-term relative frequency of action and state changes — a
question that turns out to be nontrivial even in this simple setup.

2. Model

We follow the setup from Moscarini et al. (1998) closely. Time is discrete, and the
horizon is infinite, i.e., t ∈ N+ = {1, 2, . . .}. There is a binary state θt ∈ {−1,+1} that
constantly evolves over time. A sequence of agents indexed by time t arrive in order, each
acting once by choosing an action at ∈ {−1,+1} with a payoff function that depends on
the unknown state at time t: 1(at = θt), i.e., a positive payoff of one if the action matches
the current state and zero otherwise.

Before choosing an action, agent t receives a private signal st and observes the history
of all past actions made by her predecessors, ht−1 = (a1, a2, . . . , at−1). Conditional on
the entire sequence of states, the private signals st are independent, and each st has

5Intuitively, as the volatility of the environment increases, past actions become less relevant to the current
state. At some point, this information weakens enough so that the amnesiac agent would always follow
her latest signal, but the full-recall agent may not do so at this point. Hence there is an increase in the
probability of an action change due to amnesia.
6See more studies in the computer science literature, e.g., Acemoglu et al. (2008); Shahrampour et al.
(2013) that consider a dynamic environment with non-Bayesian agents.
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a Bernoulli distribution Bθt(α) where α is the symmetric probability of matching the
current state: P[st = i|θt = i] = α ∈ (1/2, 1), for i ∈ {−1,+1}. We often refer to signal
s = +1 as an up-signal and to s = −1 as a down-signal. Let It = {−1,+1}t−1×{−1,+1}
be the space of information available to agent t prior to her decision so that It = (ht−1, st)

is an element of It.
For simplicity, we assume that both states are equally likely at the beginning of time,

and the state evolves according to a symmetric Markov chain with transition probability ε,
i.e., P[θt+1 ̸= i|θt = i] = ε, for i ∈ {−1,+1}. This assumption implies that the stationary
distribution of θt is uniform. We assume throughout that the state is sufficiently persistent
and in particular, ε ∈ (0, α(1−α)) so that temporary cascades can arise (Moscarini et al.,
1998, Proposition 2). Equivalently, one can think of this assumption as follows: in every
period, with probability 2ε ∈ (0, 2α(1−α)) the state will be redrawn from {−1,+1} with
equal probability. Thus, the probability of a state change is equal to ε ∈ (0, α(1− α)).

At any time t, the timing of the events is as follows. First, agent t arrives and observes
the history ht−1 of all past actions. Second, the state θt−1 transitions to θt with probability
ε of changing. Then, agent t receives a private signal st that matches the current state
θt with probability α. Finally, she chooses an action at that maximizes the probability of
matching θt conditional on It, the information available to her.

2.1. Fads. Given that each agent aims to match the current state, the best action to
take also fluctuates as the state evolves. BHW briefly discuss the idea that agents exhibit
faddish behavior if they change their actions more often than the state. Formally, we say
that fads emerge by time n + 1 if the fraction of time periods t ≤ n for which at ̸= at+1

is larger than the fraction of those for which θt ̸= θt+1, i.e.,

Qa(n) :=
1

n

n∑
t=1

1(at ̸= at+1) >
1

n

n∑
t=1

1(θt ̸= θt+1) =: Qθ(n). (1)

Multiplying both sides of (1) by n, the emergence of fads by time n + 1 implies that
actions would have changed more often than the state by time n+ 1.

2.2. Agents’ Beliefs. Let qt := P[θt = +1|ht−1] denote the public belief assigned to
state θt = +1 at time t after observing the history of actions ht−1. Let pt := P[θt = +1|It]
denote the posterior belief assigned to state θt = +1 after observing It = (ht−1, st).
Denote the log-likelihood ratio (LLR) of the posterior belief of agent t by

Lt := log
pt

1− pt
= log

P[θt = +1|It]
P[θt = −1|It]

,

and call it the posterior likelihood at time t. It follows from Bayes’ rule that the posterior
likelihood at time t satisfies

Lt = log
P[st|θt = +1, ht−1]

P[st|θt = −1, ht−1]
+ log

P[θt = +1|ht−1]

P[θt = −1|ht−1]
. (2)
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As the private signal is independent of the history conditional on the current state, the
first term in (2) reduces to the LLR induced by the signal and it is equal to cα := log α

1−α

if st = +1 and −cα if st = −1. Denote the second term in (2) by

lt := log
qt

1− qt
= log

P[θt = +1|ht−1]

P[θt = −1|ht−1]
,

the public likelihood at time t. Intuitively, anyone who observes all past actions until time
t− 1 can calculate this log-likelihood ratio.

Thus, depending on the realization of the private signals, the posterior likelihood Lt is
the sum of the public likelihood lt and the LLR induced by the private signal at time t:

Lt =

lt − cα if st = −1,

lt + cα if st = +1.
(3)

2.3. Agents’ Behavior. The optimal action for agent t is the action that maximizes
her expected payoff conditional on the information available to her:

at ∈ argmax
a∈{−1,+1}

E[1(θt = a)|It] = argmax
a∈{−1,+1}

P[θt = a|It].

Thus at = +1 if Lt > 0 and at = −1 if Lt < 0. When agent t is indifferent, i.e., Lt = 0,
we assume that she would follow what her immediate predecessor did in the previous
period, i.e., at = at−1.7 This assumption ensures that action changes are not due to the
specification of the tie-breaking rule but rather due to her strict preference for one action
over another.

2.4. Information Cascades and Regions. An information cascade is the event in
which the past actions of others form an overwhelming influence on agents so that they
act independently of the private signals. Specifically, it follows from (3) that the sign of
the posterior likelihood Lt is purely determined by the sign of the public likelihood lt once
the absolute value of lt exceeds cα. Since the sign of Lt determines the optimal action of
agent t, in this case, at will also be purely determined by the sign of lt, independent of
the private signal st. That is, at = +1 if lt > cα and at = −1 if lt < −cα. When |lt| < cα,
agent t chooses the action according to her private signal so that at = st.

When |lt| = cα, by the tie-breaking rule at indifference, regardless of the private signal
that agent t receives, she chooses at = at−1 = sign(lt).8 Thus, we call the region of the
public likelihood in which |lt| ≥ cα the cascade region and the region in which |lt| < cα

7This tie-breaking rule differs from the one in Moscarini et al. (1998) where indifferent agents are assumed
to follow their own private signals. Our results do not depend on this choice and are robust to any tie-
breaking rule that is common knowledge.
8Without loss of generality, consider lt = cα. If st = +1, Lt = lt + cα > cα so at = +1. If st = −1,
Lt = lt − cα = 0 and by the tie-breaking rule, at = at−1. To see why at−1 = sign(lt) = +1, suppose
to the contrary that at−1 = −1. Given that lt = cα and at−1 = −1, it must be that lt−1 > cα, which
implies that at−1 = +1. A contradiction.
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the learning region. We refer to the cascade in which a = +1 as an up-cascade and to
the cascade in which a = −1 as a down-cascade.

3. Results

We now state our main result. Recall that in (1) we define the emergence of fads
by some time n + 1 as a higher relative frequency of action changes compared to state
changes.

Theorem 1. For any signal precision α ∈ (1/2, 1) and probability of state change ε ∈
(0, α(1− α)), fads emerge in the long run almost surely, i.e.,

lim
n→∞

Qa(n) > lim
n→∞

Qθ(n) a.s.

Perhaps surprisingly, Theorem 1 shows that even though there are times in which
agents stop responding to their private signals, i.e., when cascades arise temporarily,
agents who observe their predecessors’ past actions still change their actions more often
than the state in the long run. In other words, fads can emerge from social learning even
though the underlying environment evolves very slowly. For example, consider a private
signal with a precision of 0.8. When the probability of state change is equal to 0.01, the
state changes once every hundred periods on average. Meanwhile, the average time for
the action to change is strictly less than six-one periods.9 Thus, in the long run, actions
would change strictly more often than the state, resulting in faddish behavior.

The idea behind the proof of Theorem 1 is as follows. Intuitively, as older social infor-
mation becomes less relevant to the current agent in a changing environment, agents stop
cascading on the same action and start periodically aggregating their private information.
This periodical information aggregation then drives action fluctuations since agents at
these times are easily gullible by opposing news. Formally, we show that once the public
belief exits the cascade region, the action either changes or the public belief enters the
same cascade region again.10 We upper bound the probability of the latter event and thus
establish an upper bound to the expected time between action switches (Proposition 1).
We compare this upper bound to the expected time between state changes and show that
the former is strictly less than the latter. Finally, our main result (Theorem 1) translates
the expected time between both action and state changes into their long-run relative
frequency of changes. Building on this, we conclude that the long-run relative frequency
of action changes is higher than that of state changes.

Note that the connection between the expected time of action changes and its long-
run relative frequency of changes is not a consequence of the law of large numbers, as
these action changes are not independent events. Instead, we circumvent this problem
by studying the process of (random) time elapsed between action changes, which has
9This follows from Proposition 1 in §4.2 by substituting α = 0.8 and ε = 0.01 into M(α, ε), and we have
M(0.8, 0.01) ≈ 60.7.
10It may take more than one up-action for the public belief to enter the same cascade region again.
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Table 1. The numerical simulations of the number of action and state
changes (in parentheses) under different values of α and ε for 100,000 pe-
riods.

α \ ε 0.05 0.1 0.2
0.51 16,766 (5,081) 28,564 (10,055) 42,128 (20,024)
0.75 15,240 (5,100) 26,149 (10,034) –
0.9 14,252 (5,096) – –

well-defined moments (see Lemma 2). Also, notice that unlike the fixed-state model,
when the state changes over time, the public belief about the current state ceases to be
an unconditional martingale.11 Nevertheless, the public belief is still a Markov process
with specific transitional patterns (see Lemma 1).

We restrict our model to a persistent state so temporary cascades can arise (Moscarini
et al., 1998, Proposition 2). The reason for this restriction is twofold. First, in a world
where cascades never arise, agents would follow their signals and change their actions
accordingly. Here, action changes are purely driven by the volatility in the state and
the noise from the private signals; thus, social learning plays no role in agents’ behavior.
In contrast, in our model, even with the intervention of social learning, which generates
cascades that slow down action changes, we show that in the long run, actions still change
more often than the state. This result suggests that the emergence of fads is robust to
observational learning. Second, even for a persistent state, it is a priori unclear whether
actions or the state changes more often, as the state becomes less likely to change, it also
slows down action changes. Intuitively, in this case, past actions become more informative
about the current state, and as a result, temporary cascades last longer, prolonging action
inertia.

3.1. Numerical Simulations. To complement the asymptotic result of Theorem 1, we
simulate the long-run frequencies of action and state changes under different parameter
values of α and ε in Table 1. The first observation is that these numerical simulations
confirm our main result: for all parameter values considered, the action changes more
often than the state. Next, we consider how the magnitude of the action and state changes
varies across different parameter values. On the one hand, one can see that as the private
signal becomes more precise (α increases), the number of action changes decreases, and so
does the ratio between action and state changes. Intuitively, more precise signals reduce
unnecessary action changes. On the other hand, as the state becomes more volatile (ε
increases), both the action and the state change more frequently. However, the ratio
between these changes decreases from around 3.3 to 2.1 (see the first row in Table 1),
suggesting that the indirect effect of state volatility on action changes is less significant
than its direct effect on state changes.
11The martingale property is an important tool in analyzing the long-run behavior of learning, e.g., it is
essential in proving asymptotic learning (Smith and Sørensen, 2000) for unbounded signals.
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4. Analysis

In this section, we first analyze how the public likelihood evolves in different regions,
i.e., the cascade and learning region. We then compare the expected time between state
and action changes and establish an upper bound on the expected time between action
changes, which is crucial in proving our main result.

4.1. The Evolution of the Public Likelihood.

4.1.1. Cascade Region. When the state is fixed (ε = 0), it is well-known that the public
likelihood stays forever at the value at which it first entered the cascade region, and an
incorrect cascade can occur forever with positive probability (Bikhchandani et al., 1992;
Banerjee, 1992).

When the state is changing (ε > 0), however, the behavior of the public likelihood
changes significantly. To see this, consider first the case where the public likelihood is
in the cascade region. Suppose that t is a time at which the public likelihood enters the
cascade region from the learning region. Although no agent’s actions reveal more infor-
mation about the state after time t, the state still evolves and changes with probability
ε in every period. Since the process (θt)t is a Markov chain, it follows from the law of
total probability that the public belief updates deterministically as follows:

qt+1 := P[θt+1 = +1|ht] =
∑

θt∈{−1,+1}

P[θt+1 = +1|ht, θt]P[θt|ht]

= (1− ε)qt + ε(1− qt),

so that

qt+1 = (1− 2ε)qt + (2ε)
1

2
. (4)

Equivalently, we can write it recursively in terms of the public likelihood:

lt+1 := log
qt+1

1− qt+1

= log
(1− ε)elt + ε

1− ε+ εelt
. (5)

From (4), we see that qt+1 tends to 1/2, and by (5), lt+1 moves towards zero over time
so that eventually it will exit the cascade region. Intuitively, having a changing state
depreciates the value of older information as actions observed in earlier periods become
less relevant to the current state. Consequently, after some finite number of periods,
the public belief will slowly converge towards uniformity, and thus information cascades
built upon this public belief cannot last forever. Indeed, this is the main insight from
Moscarini et al. (1998), where they show that information cascades (if they arise) must
end in finite time.

4.1.2. Learning Region. When the state is fixed (ε = 0), as the agent’s action is informa-
tive about her private signal in the learning region, i.e., at = st, the public belief at time
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t+ 1 coincides with the posterior belief at time t:

qt+1 := P[θt+1 = 1|ht−1, at] = P[θt = 1|ht−1, st] = pt.

Hence, the public likelihood coincides with the posterior likelihood, lt+1 = Lt and lt+1

evolves according to (3). When the state changes with probability ε > 0 in every period,
upon observing the latest history, each agent also needs to consider the possibility that the
state may have changed after the latest action was taken. However, neither the learning
region nor the cascade region is affected by a changing state as the state only transitions
after the history of past actions is observed. By Bayes’ rule, the public likelihood at time
t+ 1 in the learning region is

lt+1 := log
qt+1

1− qt+1

= log
P[θt+1 = +1|ht−1, at]

P[θt+1 = −1|ht−1, at]

= log

∑
θt∈{−1,+1} P[θt+1 = +1, at|ht−1, θt]P[θt|ht−1]∑
θt∈{−1,+1} P[θt+1 = −1, at|ht−1, θt]P[θt|ht−1]

. (6)

Notice that the process (θt)t is a Markov chain and at = st in the learning region,
conditioned on θt, both θt+1 and at are independent of ht−1 and independent of each
other. Hence, we can write (6) as

lt+1 =

log (1−ε)αelt+ε(1−α)

εαelt+(1−ε)(1−α)
:= f+(lt) if st = +1,

log (1−ε)(1−α)elt+εα

ε(1−α)elt+(1−ε)α
:= f−(lt) if st = −1.

(7)

Note that f+(l) > l and f−(l) < l and in particular, both f+(l) and f−(l) are strictly
increasing in l. Intuitively, when an agent starts with a higher prior belief, her posterior
belief will be higher upon receiving either an up or down signal. Similarly, an agent’s
posterior belief will also be higher (lower) than her prior belief upon receiving an up-signal
(down-signal).

The following lemma summarizes two distinct patterns of the transition of the public
likelihood in the learning region. From (7), one can see that the magnitude difference
between lt and lt+1 depends on both the realization of the private signal st and the current
value of lt. At any time t, we say an action is opposing to the current public belief if
at ̸= sign(lt) and supporting otherwise.

Lemma 1. For any signal precision α ∈ (1/2, 1) and probability of state change ε ∈
(0, α(1− α)), if the public likelihood is in the learning region, then

(i) observing one opposing action is sufficient to overturn its sign;
(ii) at most two supporting actions are required to initiate a cascade.

This lemma is in spirit close to the overturning principle in Sørensen (1996) but adapted
to a changing state. Intuitively, the first part of Lemma 1 holds as the public belief in
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the learning region is not too extreme and updates monotonically after opposing news.
The second part of Lemma 1 holds because although the updating process of the public
belief is slowed down by a changing state, observing consecutive good news is sufficient
to start a cascade.

Another important observation is that regardless of whether the state is fixed or chang-
ing, the process of the public likelihoods (lt)t in either case forms a Markov chain.12 In the
case of a fixed state, the state space of (lt)t is finite as the magnitude difference between lt

and lt+1 is a constant for any fixed signal precision (e.g., cα in our model). However, in the
case of a changing state, the state space of (lt)t is infinite as such magnitude differences
also depend on the current value of lt, resulting in many more possible values for lt.13

This poses a significant challenge in finding the stationary distribution for this Markov
process. We circumvent this problem by providing an upper bound to the expected time
between the sign switches of the public likelihood next.

4.2. Expected Time Between State and Action Changes. We first calculate the
expected time between state changes. Since the process (θt)t is a simple Markov chain, the
expected time between state changes is inversely proportional to the probability of state
change, which is equal to 1/ε. To see this, suppose that the expected time between state
changes equals x. As (θt)t follows a two-state Markov chain with a symmetric transition
probability of ε, x satisfies

x = ε+ (1− ε)(1 + x).

This implies that x = 1/ε. Intuitively, if the state becomes more likely to change in every
period, it takes less time to change on average.

In contrast, the question of how long it takes on average for the action to change is
more difficult as the process (at)t is not a Markov chain. Nevertheless, at is a function
of lt+1, namely, the sign of lt+1, which is a Markov chain. However, as discussed before,
this Markov chain is complicated as it has infinitely many possible values and different
transition probabilities between them. The complexity of (lt)t raises difficulty in directly
analyzing the expected time between the sign switches of the public likelihood. To over-
come this, we provide an upper bound instead and thus obtain an upper bound to the
expected time between action changes.

To do so, let us first consider the maximum length of any cascade. Such a maximum
exists as the public belief in the cascade region slowly converges towards uniformity. For
any signal precision and probability of state change, since no cascade can last longer than
the cascade starting at the supremum of the public likelihood f+(cα), one can calculate
a tight upper bound to the length of any cascade from (5). Following Moscarini et al.

12To see that the process (lt)t is a Markov chain, notice that conditioned on the state θt, the private
signal st is independent of lt′ , for any t′ < t. So its distribution conditioned on lt is the same as its
distribution conditioned on (l1, . . . , lt−1) which implies that P[lt+1 = l|l1, . . . , lt] = P[lt+1 = l|lt].
13In fact, in almost all cases, two consecutive opposing signals would not exactly offset each other, i.e.,
f+(f−(l)) ̸= l and vice versa.
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(1998), we denote this bound by14

K(α, ε) =
log(1− 2α(1− α))

log(1− 2ε)
.

Note that this upper bound K(α, ε) decreases in both α and ε. Intuitively, cascades
contain more information relative to private signals as they become less precise. This
information will depreciate even slower if the state becomes less volatile, so temporary
cascades can last longer.

Given the maximum length of any cascade and the fact that whenever the public
likelihood exists a cascade, it would either climb (gradually) back to the cascade region
or switch its sign immediately (Lemma 1), one can obtain an upper bound to the expected
time between the sign switches, as shown in the next proposition. For all i = 1, 2, . . .,
denote the random time at which the public likelihood switches its sign for the i-th time
by Ti and let T0 = 0. Denote the random time elapsed between the i− 1-th and i-th sign
switch by Di := Ti − Ti−1.

Proposition 1. For any signal precision α ∈ (1/2, 1), probability of state change ε ∈
(0, α(1 − α)) and positive integers i ≥ 2, conditional on the public likelihood that just
switched its sign for the i− 1-th time, the expected time to the next sign switch is strictly
bounded above:

E[Di|lTi−1
] < M(α, ε),

where
M(α, ε) := 1 +

K(α, ε)

2α(1− α)
.

Proposition 1 states that on average, one should expect the public likelihood to change
its sign at least once every M(α, ε) periods. Note that M(α, ε) also decreases in both α

and ε and thus M(1/2, ε) is the greatest upper bound for any fixed ε. Intuitively, when
private signals are only weakly informative, agents rely more on social information. As a
result, information cascades are more likely to arise, and so is action inertia.

We thus illustrate the proof idea of Proposition 1 using a weakly informative signal,
i.e., α = 1/2 + δ where δ is strictly positive and close to 0. Denote the maximum length
of any cascades as δ approaches zero by K(1

2
, ε). In this case, upon exiting a cascade,

the probability of the public likelihood switching its sign is about 1/2 as it is almost
14For completeness, we provide a similar calculation of this bound to the one in §3.B of Moscarini et al.
(1998). Fix α ∈ (1/2, 1) and ε ∈ (0, α(1−α)). Let m denote the supremum of the public belief and note
that m = (1−ε)α2+ε(1−α)2

α2+(1−α)2 . After h periods in a cascade, by (4), the public belief starting at m becomes

g(h) := ε

h−1∑
i=1

(1− 2ε)i + (1− 2ε)hm.

Since m is the supremum, any public belief after h periods in the cascade region has a value that is
strictly less than g(h). Thus, whenever g(h) ≤ α, or equivalently, (1−2ε)h+1 ≤ 1−2α(1−α), the public
likelihood exits the cascade region. Hence, the public likelihood can never be in the cascade region for
more than log(1−2α(1−α))

log(1−2ε) periods.
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equally likely that the agent, who follows her private signal, will receive an up or down
signal. Thus, we can bound the expected time between the sign switches from above by
a geometric distribution:

1 +
∞∑
i=1

i

2i
K(

1

2
, ε) = M(1/2, ε) = 1 +

2 log 2

− log(1− 2ε)
,

which decreases in ε. Since for ε sufficiently small, M(1/2, ε) ≈ (log 2)/ε and it is always
strictly less than 1/ε, which is equal to the expected time between state changes.15 Since
there is a one-to-one mapping between the public likelihood and the agent’s action, the
following result is an immediate corollary from Proposition 1.

Corollary 2. For any signal precision α ∈ (1/2, 1) and probability of state change ε ∈
(0, α(1 − α)), the expected time between action changes is strictly less than the expected
time between state changes.

That is, on average, actions take less time to change than the state, even for a small
probability of state change in which temporary cascades arise. For example, when the
probability of state change is equal to 0.05, the state changes every twenty periods on
average. In comparison, the maximum average time for the action to change is less than
fourteen periods. Our main result (Theorem 1) then builds on this result by connecting
the expected time between action changes with its long run frequency.

5. Conclusion

We study the long-term behavior of agents who receive a private signal and observe
the past actions of their predecessors in a changing environment. As the state evolves,
agents adjust accordingly so that their actions fluctuate over time. We show that in the
long run, the relative frequency of action changes is higher than that of state changes,
suggesting fads can emerge from social learning in a changing environment.

One could study the frequency of action changes for a single long-lived agent who
repeatedly receives private signals about a changing state. We conjecture that action
changes would be less frequent in this case than in our model, where only past actions are
observable but still more frequent than the state. Intuitively, the frequency of unnecessary
action changes would reduce by shutting down the channel of noisy observations of others’
private signals. If this were the case, it would highlight the importance of observational
learning in accelerating action fluctuations, especially when the underlying environment
is slowly evolving.

One may wonder if the driving force behind our main result is due to the high frequency
of action changes when the posterior belief is around 1/2. Accordingly, we can further
restrict the definition of fads to action changes that do not have consecutive changes,
i.e., at ̸= at−1 and at−1 ̸= at−2. Simulation results show that actions still change more
15For any two sequences an and bn, we write an ≈ bn if an

bn
→ 1 as n → ∞.
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frequently than the state, even under this more restricted definition of fads. For example,
for α = 0.75, ε = 0.05 and a total of 100, 000 periods, the action changes about 8,150
times which is more frequent than the number of state changes, which is about 5,100
times.

There are several possible avenues for future research. Recall that Proposition 1 implies
that M(α, ε) is an upper bound to the expected time between action changes. One could
ask whether this upper bound M(α, ε) is tight, and if so, for any given finite time N ,
the number of action changes would be close to N/M(α, ε). Based on the simulation
results, we conjecture that it is not a tight bound. E.g., we let α = 0.9 and ε = 0.05, and
N = 100, 000. Since M(0.9, 0.05) ≈ 11.5, it implies that within these hundred thousand
periods, the action should at least change about 8700 times. However, our numerical
simulation shows that the action changes about 14, 200 times, which is almost double the
number suggested by M(0.9, 0.05).

Furthermore, our simulations suggest that as the private signal becomes less informative
and the state changes more slowly, i.e., when α approaches 1/2 and ε approaches 0 at the
same rate, the ratio between the frequency of action changes and state changes approaches
a constant that is close to 4. This suggests that achieving a very accurate understanding
of fads in this regime might be possible.
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Appendix A. Proofs

Proof of Lemma 1. Fix α ∈ (1/2, 1), ε ∈ (0, α(1 − α)). By symmetry, it is without loss
of generality to consider the case where 0 < lt < cα.

(i) First notice that f−(cα) = 0, and since f−(·) in (7) is strictly increasing, f−(lt) < 0,
for all 0 < lt < cα. Since lt is in the learning region, at = st. Hence, −1 = at ̸=
sign(lt) = +1 implies that sign(lt+1) = sign(f−(lt)) = −1.

(ii) As f+(·) is strictly increasing, it suffices to show that f+(f+(0)) ≥ cα. Note that for
all 0 < ε < α(1− α), f+(0) > cu where

cu := f−1
+ (cα) = log

(1− α)(α− ε)

α(1− α− ε)
∈ (0, cα)

is the threshold at which exactly one up-signal is required to push the public likeli-
hood into the up-cascade region. Thus, f+(f+(0)) > f+(cu) and by the definition of
cu, we have f+(f+(0)) > f+(cu) = f+(f

−1
+ (cα)) = cα, as required. □

Proof of Proposition 1. Fix α ∈ (1/2, 1), ε ∈ (0, α(1 − α)) and some positive integer
i ≥ 2. Denote the greatest integer that is less than or equal to K(α, ε) by K and note
that K ≥ 1 since K(α, ε) ≥ 1. We will provide an upper bound to E[Di|lTi−1

], the
expected time between the sign switches of the public likelihood. Consider first the case
where lTi−1

> 0.
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Denote the probability of receiving an up-signal conditioned on the public likelihood
being l by π(l).16 By the law of total probability and the fact that signals are independent
of the public belief q conditional on the (current) state,

π(l) = P[s = +1|q = el

1 + el
]

=
∑

i∈{+1,−1}

P[s = +1|q = el

1 + el
, θ = i] · P[θ = i|q = el

1 + el
]

= α · el

1 + el
+ (1− α) · 1

1 + el
=

1 + α(el − 1)

1 + el
.

Since ∂π(l)/∂l > 0, the supremum of π(l) over all l ∈ (0, cα) is equal to π(cα) = 1 −
2α(1− α), and we denote it by π̄.

Let κ(l) denote the length of the cascade initiated by receiving an up-signal conditioned
on the public likelihood being l and let L(l) denote the value of this public likelihood
after it first exits the cascade region. We further divide the range of the public likelihood
(0, f+(cα)) into three subregions: (i) [cu, cα) — the one up-signal away from the cascade
region, where cu := f−1

1 (cα); (ii) (0, cu) — the two up-signal away from the cascade region,
and (iii) [cα, f+(cα)) — the up-cascade region. Next, we obtain an upper bound for each
subregion.

First, consider lTi−1
∈ [cu, cα). By part (i) of Lemma 1, since lTi−1

is in the learning
region, one opposing signal is sufficient to change the sign of lTi−1

. Thus, the expected
time to the next sign switch satisfies

E[Di|lTi−1
] = 1− π(lTi−1

) + π(lTi−1
)
(
κ(lTi−1

) + E[Di|L(lTi−1
)]
)

< 1− π̄ + π̄
(
κ(lTi−1

) + E[Di|L(lTi−1
)]
)

≤ 1− π̄ + π̄
(
K + E[Di|L(lTi−1

)]
)
, (8)

where the second last strict inequality follows from the definition π̄ and the last inequality
follows from the definition of K. Note that there are two possible cases for the value of
L(lTi−1

). Case (i): suppose that L(lTi−1
) ∈ [cu, cα). Then, by taking the supremum on

both sides of (8) and rearranging, we obtain

sup
cu≤lTi−1

<cα

E[Di|lTi−1
] ≤ 1 +

Kπ̄

1− π̄
. (9)

Case (ii): suppose that L(lTi−1
) ∈ [0, cu). Then, similarly, by the definition of π̄, we can

write

E[Di|L(lTi−1
)] < 1− π̄ + π̄

(
1 + E[Di|f+(L(lTi−1

))]
)
.

16We suppress the dependence of π(l) on α for the ease of notation.
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By substituting the above inequality into (8), we have

E[Di|lTi−1
] < 1− π̄ + π̄

(
K + 1− π̄ + π̄

(
1 + E[Di|f+(L(lTi−1

))]
))

.

Since f+(L(lTi−1
)) ∈ [cu, cα) by part (ii) of Lemma 1, we can take the supremum on both

sides again and obtain

sup
cu≤lTi−1

<cα

E[Di|lTi−1
] ≤ 1− π̄ + (K + 1)π̄

1− π̄2
≤ 1 +

Kπ̄

1− π̄
,

so that (9) holds for all lTi−1
∈ [cu, cα).

Next, consider lTi−1
∈ (0, cu). By part (i) of Lemma (1) and the definition of π̄, the

expected time to the next sign switch is bounded above by

E[Di|lTi−1
] < (1− π̄) + π̄(1 + E[Di|f+(lTi−1

)]).

It follows from part (ii) of Lemma 1 that f+(lTi−1
) ∈ [cu, cα), and thus by (9), we have

that for all lTi−1
∈ (0, cu),

E[Di|lTi−1
] < (1− π̄) + π̄(1 + 1 +

Kπ̄

1− π̄
)

=
(K − 1)(π̄)2 + 1

1− π̄
. (10)

Finally, consider lTi−1
∈ [cα, f+(cα)). In this case, after at most K periods, the public

likelihood starting at lTi−1
would have exited the cascade region. Hence, the expected

time to the next sign switch is bounded above by

E[Di|lTi−1
] ≤ K + E[Di|L(lTi−1

)].

Again, there are two possible cases for the value of L(lTi−1
). Case (i): suppose that

L(lTi−1
) ∈ [cu, cα). It then follows from (9) that

E[Di|lTi−1
] < K + 1 +

Kπ̄

1− π̄
= 1 +

K

1− π̄
.

Case (ii): suppose that L(lTi−1
) ∈ [0, cu). It then follows from (10) that

E[Di|lTi−1
] < K +

(K − 1)(π̄)2 + 1

1− π̄
= 1 +K + π̄ +

Kπ̄2

1− π̄
≤ 1 +

K

1− π̄
.

Together, for all lTi−1
∈ [cα, f+(cα)),

E[Di|lTi−1
] < 1 +

K

1− π̄
. (11)

Since the maximum over all three upper bounds from (9) to (11) is 1 + K
1−π̄

, and by the
definition of K, K ≤ K(α, ε), this implies that

E[Di|lTi−1>0] < 1 +
K(α, ε)

2α(1− α)
=: M(α, ε).
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The case where lTi < 0 follows from a symmetric argument. Thus, by the law of total
probability, the above inequalities also hold unconditionally. □

A.1. Proof of Theorem 1. Before proving our main theorem, we introduce the following
lemma, which provides well-defined moments when working with the process (Di)i. Recall
that Di is the random time elapsed between the i−1-th and i-th sign switch of the public
likelihood.

Lemma 2. Fix any signal precision α ∈ (1/2, 1) and probability of state change ε ∈
(0, α(1 − α)). Then, for every r ∈ {1, 2, . . .} there is a constant cr that depends on α

and ε such that for all i, E[|Di|r] < cr. I.e., each moment of Di is uniformly bounded,
independently of i.

Proof. Fix α ∈ (1/2, 1), ε ∈ (0, α(1 − α)) and some positive integer i ≥ 2. Consider
without loss of generality the case where Di is the (random) time elapsed from a positive
public likelihood to the next negative one. Fix any n ≥ 2, denote the minimum number
(may not be an integer) of cascades required for the event {Di > n} by

k(n) := max
{ n− 1

⌊K(α, ε)⌋
, 1
}
.

Let π̄ = 1 − 2α(1 − α) ∈ (1/2, 1) denote the supremum of the probability of receiving
an up-signal over all l ∈ (0, cα) (as seen in the proof of Proposition 1). It follows from
Lemma 1 that for any n ≥ 2, we can bound the probability of the event {Di > n} by

P[Di > n] < π̄2+(⌊k(n)⌋−1).

Since Di is a positive random variable, it follows that for any p > 0,

lim
n→∞

npP[|Di| > n] = lim
n→∞

np

1/P[Di > n]

< lim
n→∞

np

(1/π̄)1+⌊k(n)⌋ = 0. (12)

For any r ≥ 1, the r-th moment of |Di| satisfies

E[|Di|r] =
∫ ∞

0

P[|Di|r > t]dt

< 1 +

∫ ∞

1

P[Di > y]ryr−1dy

= 1 +
∞∑
n=1

∫ n+1

n

P[Di > y]ryr−1dy

< 1 +
∞∑
n=1

P[Di > n]r(n+ 1)r−1,
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where the second inequality follows from a change of variable y = t1/r. Since (12) implies
that P[Di > n] < Cn−p for some nonnegative constant C, it follows that for any p > r,

E[|Di|r] < 1 + rC
∞∑
n=1

(n+ 1)r−1

np

< 1 + r2r−1C

∞∑
n=1

1

np−r+1
< ∞,

which holds for all i. Hence, for every r ∈ {1, 2, . . .}, there exists a constant cr =

1 + r2r−1C
∑∞

n=1
1

np−r+1 , independently of i, that uniformly bounds E[|Di|r]. □

In particular, this lemma implies that there is a finite uniform upper bound to E[D2
i ],

the second moment of Di, which is required for applying the standard martingale conver-
gence theorem. The intuition behind this lemma is simple: since any cascade must end
after K(α, ε) periods, the probability that Di is larger than some finite periods declines
exponentially fast, implying that Di has finite moments.

Given Lemma 2 and Proposition 1, we are ready to prove our main theorem.

Proof of Theorem 1. Fix α ∈ (1/2, 1) and ε ∈ (0, α(1−α)). Since the process (θt)t follows
a two-state Markov chain with a symmetric transition probability ε, (1(θ1 ̸= θ2),1(θ2 ̸=
θ3), . . .) is a sequence of i.i.d. random variables. It follows from the strong law of large
numbers that

lim
n→∞

Qθ(n) := lim
n→∞

1

n

n∑
t=1

1(θt ̸= θt+1) = P[θt ̸= θt+1] = ε a.s.

Let Φ = (F1,F2, . . .) be the filtration where each Fi = σ(D1, . . . ,Di) and thus Fj ⊆ Fi

for any j ≤ i. Hence, the sequence of random variables (D1,D2, . . .) is adapted to
Φ so that each Di is Fi-measurable. By Proposition 1 and Corollary 2, there exists
δ = 1/ε−M(α, ε) > 0 such that for all i ≥ 2,

E[Di|lTi−1
] < 1/ε− δ,

and thus by the law of total expectation and the Markov property of the public likelihood,

E[Di|Fi−1] = E[E[Di|lTi−1
,Fi−1]|Fi−1] < 1/ε− δ. (13)

Let Xi = Di − E[Di|Fi−1] for all i ≥ 2 and denote a partial sum of the process (Xi)i by

Yn = X2 +
1

2
X3 + · · ·+ 1

n− 1
Xn.

By the definition of Xi, E[Xi|Fi−1] = 0 for all i ≥ 2. Since each Yn−1 is Fn−1-measurable,
it follows that the process (Yn)n forms a martingale:

E[Yn|Fn−1] = E[
n∑

i=2

1

i− 1
Xi|Fn−1] = Yn−1 +

1

n− 1
E[Xn|Fn−1] = Yn−1.
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Note that E[X2
i ] is uniformly bounded for all i ≥ 2 since both E[D2

i ] and E[Di|Fi−1]

are uniformly bounded by Lemma 2 and (13). Hence, E[Y 2
n ] =

∑n
i=2

1
(i−1)2

E[X2
i ] < ∞ for

all n. By the martingale convergence theorem, Yn converges almost surely, and it then
follows from Kronecker’s lemma that17

lim
n→∞

1

n− 1
(X2 + · · ·Xn) = 0 a.s.

By the definition of Xi, we can write

lim
n→∞

1

n− 1

n∑
i=2

Di = lim
n→∞

1

n− 1

n∑
i=2

E[Di|Fi−1] a.s.

It follows from (13) that

lim
n→∞

1

n− 1

n∑
i=2

Di ≤ 1/ε− δ < 1/ε a.s. (14)

Since there is a one-to-one mapping between the action and the public likelihood, namely,
at = sign(lt+1) for all t ≥ 2, and by the definitions of Ti and Di,

lim
n→∞

Qa(n) = lim
n→∞

1

n− 1

n∑
t=2

1(sign(lt+1) ̸= sign(lt+2))

= lim
n→∞

n− 1

Tn − T1

= lim
n→∞

n− 1∑n
i=2 Di

.

Finally, it follows from (14) that

lim
n→∞

Qa(n) > ε = lim
n→∞

Qθ(n) a.s.

□

17This result is also known as the strong law for martingales (See p.238, Feller (1966, Theorem 2)).
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